Advertisement

Solid-State NMR Studies of Halogen Bonding

  • Patrick M. J. Szell
  • David L. Bryce
Reference work entry

Abstract

Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen atom and an electron donor. Halogen bonds play important roles in various fields of research including supramolecular chemistry and crystal engineering, for instance. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable tool for probing noncovalent interactions, including halogen bonds. This article provides a brief background on halogen bonding and fundamental NMR interactions, followed by an overview of various applications of SSNMR spectroscopy to the study of halogen bonds. Nuclides of interest to date include 1/2H, 13C, 14/15N, 17O, 31P, 35/37Cl, 77Se, 79/81Br, and 127I. The utility of chemical shifts, J-couplings, and quadrupolar couplings is discussed in the context of examples from the literature.

Keywords

Halogen Chlorine Bromine Iodine Quadrupolar coupling Chemical shift J-coupling Non-covalent Dynamics Crystal engineering 

References

  1. 1.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85:1711–3.CrossRefGoogle Scholar
  2. 2.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. The halogen bond. Chem Rev. 2016;116:2478–601.CrossRefGoogle Scholar
  3. 3.
    Colin MM. Gaultier de Claubry H. Sur les combinaisons de l’iode avec les substances vegétales et animales. Ann Chim. 1814;90:87–100.Google Scholar
  4. 4.
    Colin M. Sur Quelques Combinaisons de L’Iode. Ann Chim. 1814;91:252–72.Google Scholar
  5. 5.
    Hassel O. Structural aspects of interatomic charge-transfer bonding. The Nobel Foundation. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1969/hassel-lecture.pdf. Accessed November 2016.
  6. 6.
    Clark T, Hennemann M, Murray JS, Politzer P. Halogen bonding: the σ-Hole. J Mol Model. 2007;13:291–6.CrossRefGoogle Scholar
  7. 7.
    Murray JS, Lane P, Politzer P. Expansion of the σ-Hole concept. J Mol Model. 2009;15:723–9.CrossRefGoogle Scholar
  8. 8.
    Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G. Naming interactions from the electrophilic site. Cryst Growth Des. 2014;14:2697–702.CrossRefGoogle Scholar
  9. 9.
    Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Halogen bonding in supramolecular chemistry. Chem Rev. 2015;115:7118–95.CrossRefGoogle Scholar
  10. 10.
    Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. NMR nomenclature: nuclear spin properties and conventions for chemical shifts. Pure Appl Chem. 2001;73:1795–818.CrossRefGoogle Scholar
  11. 11.
    Pyykkö P. Year-2008 nuclear quadrupole moments. Mol Phys. 2008;106:1965–74.CrossRefGoogle Scholar
  12. 12.
    Perras FA, Widdifield CM, Bryce DL. QUEST – Quadrupolar exact software: a fast graphical program for the exact simulation of NMR and NQR spectra for Quadrupolar nuclei. Solid State Nucl Magn Reson. 2012;45–46:36–44.CrossRefGoogle Scholar
  13. 13.
    Bryce DL, Wasylishen RE. Ab initio characterization of through-space indirect nuclear spin–spin coupling tensors for fluorine-X (X = F, C, H) spin pairs. J Mol Struct. 2002;602–603:463–72.CrossRefGoogle Scholar
  14. 14.
    Bryce DL, Viger-Gravel J. Solid-state NMR study of halogen-bonded adducts. Top Curr Chem. 2015;358:183–204.CrossRefGoogle Scholar
  15. 15.
    Bouchmella K, Dutremez SG, Alonso B, Mauri F, Gervais C. 1H, 13C, and 15N solid-state NMR studies of imidazole- and morpholine-based model compounds possessing halogen and hydrogen bonding capabilities. Cryst Growth Des. 2008;8:3941–50.CrossRefGoogle Scholar
  16. 16.
    Weingarth M, Raouafi N, Jouvelet B, Duma L, Bodenhausen G, Boujlel K, Schöllhorn B, Tekely P. Revealing molecular self-assembly and geometry of non-covalent halogen bonding by solid-state NMR spectroscopy. Chem Commun. 2008; 5981–3.Google Scholar
  17. 17.
    Viger-Gravel J, Korobkov I, Bryce DL. Multinuclear solid-state magnetic resonance and X-ray diffraction study of some thiocyanate and selenocyanate complexes exhibiting halogen bonding. Cryst Growth Des. 2011;11:4984–95.CrossRefGoogle Scholar
  18. 18.
    Ramsey NF. Magnetic shielding of nuclei in molecules. Phys Rev. 1950;78:699–703.CrossRefGoogle Scholar
  19. 19.
    Viger-Gravel J, Meyer JE, Korobkov I, Bryce DL. Probing halogen bonds with solid-state NMR spectroscopy: observation and interpretation of J(77Se, 31P) coupling in halogen-bonded P=Se···I motifs. CrystEngComm. 2014;16:7285–97.CrossRefGoogle Scholar
  20. 20.
    Xu Y, Viger-Gravel J, Korobkov I, Bryce DL. Mechanochemical production of halogen-bonded solids featuring P=O···I-C motifs and characterization via X-ray diffraction, solid-state multinuclear magnetic resonance, and density functional theory. J Phys Chem C. 2015;119:27104–17.CrossRefGoogle Scholar
  21. 21.
    Attrell RJ, Widdifield CM, Korobkov I, Bryce DL. Weak halogen bonding in solid haloanilinium halides probed directly via chlorine-35, bromine-81, and iodine-127 NMR spectroscopy. Cryst Growth Des. 2012;12:1641–53.CrossRefGoogle Scholar
  22. 22.
    Widdifield CM, Cavallo G, Facey GA, Pilati T, Lin J, Metrangolo P, Resnati G, Bryce DL. Multinuclear solid-state magnetic resonance as a sensitive probe of structural changes upon the occurrence of halogen bonding in co-crystals. Chem Eur J. 2013;19:11949–62.CrossRefGoogle Scholar
  23. 23.
    Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL. Direct investigation of halogen bonds by solid-state multinuclear magnetic resonance spectroscopy and molecular orbital analysis. J Am Chem Soc. 2014;136:6929–42.CrossRefGoogle Scholar
  24. 24.
    Bryce DL, Sward GD. Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127. Magn Reson Chem. 2006;44:409–50.CrossRefGoogle Scholar
  25. 25.
    Chapman RP, Widdifield CM, Bryce DL. Solid-state NMR of quadrupolar halogen nuclei. Prog Nucl Magn Reson Spectrosc. 2009;55:215–37.CrossRefGoogle Scholar
  26. 26.
    Widdifield CM, Chapman RP, Bryce DL. Chlorine, bromine, and iodine solid-state NMR spectroscopy. Annu Rep Nucl Magn Reson Spectrosc. 2009;66:195–326.Google Scholar
  27. 27.
    Szell PMJ, Bryce DL. Recent advances in chlorine, bromine, and iodine solid-state NMR spectroscopy. Annu Rep Nucl Magn Reson Spectrosc. 2015;84:115–62.Google Scholar
  28. 28.
    Pérez-Tarralba M, García MA, López C, Tarralba MC, Torres MR, Claramunt RM, Elguero J. Structural investigation of weak intermolecular interactions (hydrogen and halogen bonds) in fluorine-substituted benzimidazoles. Cryst Growth Des. 2014;14:3499–509.CrossRefGoogle Scholar
  29. 29.
    Roy K, Wibowo AC, Pellechia PJ, Ma S, Geer MF, Shimizu LS. Absorption of hydrogen bond donors by Pyridyl Bis-urea crystals. Chem Mater. 2012;24:4773–81.CrossRefGoogle Scholar
  30. 30.
    Baldrighi M, Cavallo G, Chierotti MR, Gobetto R, Metrangolo P, Pilati T, Resnati G, Terraneo G. Halogen bonding and pharmaceutical cocrystals: the case of a widely used preservative. Mol Pharm. 2013;10:1760–72.CrossRefGoogle Scholar
  31. 31.
    Gao HY, Shen QJ, Zhao XR, Yan XQ, Pang X, Jin WJ. Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C-I···π halogen bonding. J Mater Chem. 2012;22:5336–43.CrossRefGoogle Scholar
  32. 32.
    Perras FA, Bryce DL. Direct investigation of covalently bound chlorine in organic compounds by solid-state 35Cl NMR spectroscopy and exact spectral line-shape simulations. Angew Chem Int Ed. 2012;51:4227–30.CrossRefGoogle Scholar
  33. 33.
    O’Keefe CA, Jonston KE, Sutter K, Autchbach J, Gauvin R, Trébosc J, Delevoye L, Popoff N, Taoufik M, Oudatchin K, Schurko RW. An investigation of chlorine ligands in transition-metal complexes via 35Cl solid-state NMR and density functional theory calculations. Inorg Chem. 2014;53:9581–97.CrossRefGoogle Scholar
  34. 34.
    Szell PMJ, Bryce DL. 35Cl solid-state NMR and computational study of chlorine halogen bond donors in single-component crystalline chloronitriles. J Phys Chem C. 2016;120:11121–30.CrossRefGoogle Scholar
  35. 35.
    Viger-Gravel J, Leclerc S, Korobkov I, Bryce DL. Correlation between 13C chemical shifts and the halogen bonding environment in a series of solid para-diiodotetrafluorobenzene complexes. CrystEngComm. 2013;15:3168–77.CrossRefGoogle Scholar
  36. 36.
    Baldrighi M, Bartesaghi D, Cavallo G, Chierotti MR, Gobetto R, Metrangolo P, Pilati T, Resnati G, Terraneo G. Polymorphs and co-crystals of haloprogin: an antifungal agent. CrystEngComm. 2014;16:5897–904.CrossRefGoogle Scholar
  37. 37.
    Lemouchi C, Vogelsberg CS, Zorina L, Simonov S, Batail P, Brown S, Garcia-Garibay MA. Ultra-fast rotors for molecular machines and functional materials via halogen bonding: crystals of 1,4-bis(iodoethynyl)bicycle[2.2.2]octane with distinct gigahertz rotation at two sites. J Am Chem Soc. 2011;133:6371–9. Correction: J Am Chem Soc. 2011;133:13765.CrossRefGoogle Scholar
  38. 38.
    Catalano L, Pérez-Estrada S, Terraneo G, Pilati T, Resnati G, Metrangolo P, Garcia-Garibay MA. Dynamic characterization of crystalline supramolecular rotors assembled through halogen bonding. J Am Chem Soc. 2015;137:15386–9.CrossRefGoogle Scholar
  39. 39.
    Southern SA, Bryce DL. NMR investigations of noncovalent carbon tetrel bonds. Computational assessment and initial experimental observation. J Phys Chem A. 2015;119:11891–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaCanada

Personalised recommendations