Advertisement

Large-Scale Screening of Food Products for Quality and Authenticity

  • Stephan Schwarzinger
Reference work entry

Abstract

Nuclear magnetic resonance (NMR) spectroscopy, known as a leading technology for investigating structure and dynamics of molecules, has recently been introduced into food science for screening of large sets of samples. Due to the high prices of instruments NMR has for a long time not been considered in food science. However, technological advances including ease of operation, repeatability and comparability, dynamic bandwidth and fact that NMR is a primary quantitative method allowing time- and cost-efficient multiparameter quantification have paved to road to routine application in food industry.

Keywords

Food Fraud Authenticity Mulit-parameter Quality screening Ingredient profiling Honey Juice Large scale data set Chemometrics Metabonomics 

References

  1. 1.
    Lachenmeier D, Humpfer E, Fang F, Schütz B, Dvortsak P, Sproll C, Spraul M. NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine. J. Agric. Food Chem. 2009;57:7194–9.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Harmonized methods of the international honey commission: http://www.ihc-platform.net/ihcmethods2009.pdf
  4. 4.
    Godelmann R, Fang F, Humpfer E, Schütz B, Bansbach M, Schäfer H, Spraul M. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. J. Agric. Food Chem. 2013;61:5610–9.CrossRefGoogle Scholar
  5. 5.
    Von der Ohe W, editor. Extra issue on European unifloral honeys. Apidologie 2004; 35 Suppl 1. https://www.apidologie.org/articles/apido/abs/2004/06/contents/contents.html
  6. 6.
    Weber M, Hellriegel C, Rück A, Sauermoser R, Wüthrich J. Using high-performance quantitative NMR (HP-qNMR®) for certifying traceable and highly accurate purity values of organic reference materials with uncertainties <0.1%. Accred. Qual. Assur. 2013;18:91–8.CrossRefGoogle Scholar
  7. 7.
    Akoka S, Barantin A, Trierweiler M. Concentration measurements by proton NMR using the ERETIC method. Analyt. Chem. 1999;71:2554–7.CrossRefGoogle Scholar
  8. 8.
    Dreier L, Wider G. Concentration measurements by PULCON using X-filtered od 2D NMR spectra. Magn. Reson. Chem. 2006;44:206–8.CrossRefGoogle Scholar
  9. 9.
    Bharti S, Roy R. Quantitative 1H NMR spectroscopy. Trend. Anal. Chem. 2012;35:5–26.  https://doi.org/10.1016/j.trac.2012.02.007.CrossRefGoogle Scholar
  10. 10.
    EUROLAB Technical Report 1/2014. Guide to NMR method development and validation – Part 1: identification and quantification 2014; http://www.eurolab.org/documents/EUROLAB%20Technical%20Report%20NMR%20Method%20Development%20and%20Validation%20May%202014_final.pdf
  11. 11.
  12. 12.
    Monakhova YB, Kuballa T, Lachenmeier DW. Chemometric methods in NMR spectroscopic analysis of food products. J. Anal. Chem. 2013;68:755–66.CrossRefGoogle Scholar
  13. 13.
    Spraul M, Schütz B, Rinke P, Koswig S, Humpfer E, Schäfer H, et al. NMR-based multi parametric quality control of fruit juices: SGF profiling. Nutrients. 2009;1:148–55.CrossRefGoogle Scholar
  14. 14.
    Missler J, Kämpf B, Schwarzinger S, Schütz B. Honey-Profiling™ von A bis Z: Der transparente Überblick. DLR 2017; 6.2017: 264–8.Google Scholar
  15. 15.
    Schwarzinger S, Brauer F, Rösch P, Kämpf B. FOOD FRAUD: honey, what else? New Food Magazine. 2015;18(6):27–31. https://www.newfoodmagazine.com/article/21426/issue-6-2015-digital-edition/.Google Scholar
  16. 16.
    Dübecke A. NMR profiling of honey. eFOOD-Lab Int. 2015;3/15:14–6. https://www.blmedien.de/data/emags/blmedien/eFOOD-Lab_International_03_2015/#/14/.Google Scholar
  17. 17.
    Schwarzinger S, Kämpf B, Rösch P. Mit Hightech gegen Honigverfälschungen. Deutsch. Bienen J. 2015;23(2):6–8.Google Scholar
  18. 18.
    Ellinger JJ, Chylla RA, Ulrich EL, Markley JL. Databases and software for NMR-based metabolomics. Curr. Metababolomics 2013; 1(1)  https://doi.org/10.2174/2213235X11301010028
  19. 19.
  20. 20.
    Schwarzinger S, Brauer F, Rösch P, Dübecke A, Lüllmann C, Beckh G, et al. Authentic food: what a single analysis parameter is not enough. Q & More. 2016;01.16:36–43. http://q-more.chemeurope.com/q-more-articles/234/authentic-food.html.Google Scholar
  21. 21.
    Schwarzinger S, Igel C; Brauer F, Rösch P, Bachert W. More than honey? Rapid authenticity testing for honey with NMR spectroscopy and consequences for sample preparation. Q & More 2014; 2.14: 36–43. http://q-more.chemeurope.com/q-more-articles/183/more-than-honey.html.
  22. 22.
    Ohmenhaeuser M, Monakhova Y, Kuballa T, Lachenmeier DW. Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. Analyt. Chem. 2013; Article ID 825318. https://www.hindawi.com/journals/isrn/2013/825318/.
  23. 23.
    Spiteri M, Jamin E, Thomas F, Rebours A, Lees M, Rogers KM, Rutledge DN. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem. 2015;189:60–6.CrossRefGoogle Scholar
  24. 24.
    Hermosin I, Chicón RM, Cabezudo MD. Free amino acid composition and botanical origin of honey. Food Chem. 2003;83:263–8.CrossRefGoogle Scholar
  25. 25.
    De la Fuente E, Martínez-Castro I, Sanz J. Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry. J. Sep. Sci. 2005;28:1093–100.CrossRefGoogle Scholar
  26. 26.
    Truchado P, Martos I, Bortolotti L, Sabatini LB, Ferreres F, Tomas-Baberan FA. Use of Quinoline Alkaloids as Markers of the Floral Origin of Chestnut Honey. J. Agric. Food Chem. 2009;57(13):5680–6.CrossRefGoogle Scholar
  27. 27.
    Beretta G, Vistoli G, Caneva E, Anselmi C, Maffei Facion R. Structure elucidation and NMR assignments of two new pyrrolidinyl quinoline alkaloids from chestnut honey. Magn. Reson. Chem. 2009;47:456–9.CrossRefGoogle Scholar
  28. 28.
    Turski MP, Chwil S, Turska M, Chwil M, Kocki T, Rajtar G, Parada-Turska J. An exceptional high content of kynurenic acid in chestnut honey and flowers of chestnut tree. J. Food Comp. Anal. 2016;48:67–72.CrossRefGoogle Scholar
  29. 29.
    Mavric E, Wirrmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 2008;52(4):483–9.CrossRefGoogle Scholar
  30. 30.
    Adams CJ, Manley-Harris M, Molan PC. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydrate Res. 2009;344:1050–3.CrossRefGoogle Scholar
  31. 31.
    Oelschlaegel S, Gruner M, Wang PN, Boettcher A, Koelling-Speer I, Speer K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 2012;60:7229–37.CrossRefGoogle Scholar
  32. 32.
    Missler J, Wiezorek T, Beckh G. Mannse: a marker for adulteration with syrup or resin treatment of blossom honey. Proceedings of the XIII international conference on the applications of magnetic resonance in food science. Imp. 2016; 16: 17–20. https://www.impopen.com/subs/mrfs/v16/M16_0017.pdf.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for BiomacromoleculesUniversity of BayreuthBayreuthGermany

Section editors and affiliations

  • John van Duynhoven
    • 1
  1. 1.Laboratory of BiophysicsWageningen University, Agrotechnology and Food Sciences Group (AFSGWageningenNetherlands

Personalised recommendations