Skip to main content

2D TD-NMR Analysis of Complex Food Products

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

This chapter deals with the principles and the applications in food science of 2D T1-T2 and D-T2 correlation techniques in time domain NMR (TD-NMR) spectroscopy. These approaches have demonstrated their potential for the structural and dynamic characterization of foodstuffs. Because relaxation or diffusion measurements result in time-decaying signals, the data analysis involves Laplace inversion, known to be an ill-conditioned and ill-posed problem but coupled with efficient iterative algorithms still allowing for 2D reconstructions. As the food matrices are heterogeneous, multiphase, and rather unstable over time, 2D methods were first applied to help assign multicomponent relaxation times to specific molecules (mainly fat and water) in specific chemical environments, as well as for real-time monitoring of the changes they undergo during storage or particular types of processing such as cooking or freezing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venkataramanan L, Song YQ, Hurlimann MD. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans Signal Process. 2002;50(5):1017–26.

    Article  Google Scholar 

  2. Hurlimann M, Venkataramanan L, Flaum C. The diffusion–spin relaxation time distribution function as an experimental probe to characterize fluid mixtures in porous media. J Chem Phys. 2002;117:10223–32.

    Article  CAS  Google Scholar 

  3. Godefroy S, Callaghan P. 2D relaxation/diffusion correlations in porous media. Magn Reson Imaging. 2003;21(3):381–3.

    Article  CAS  Google Scholar 

  4. Song Y. Novel two-dimensional NMR of diffusion and relaxation for material characterization. In: Stapf S, Han S, editors. NMR in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 163–83.

    Chapter  Google Scholar 

  5. Hurlimann MD, Burcaw L, Song YQ. Quantitative characterization of food products by two-dimensional D-T-2 and T-1-T-2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297(1):303–11.

    Article  CAS  Google Scholar 

  6. Hurlimann MD, Venkataramanan L. Quantitative measurement of two-dimensional distribution functions of diffusion and relaxation in grossly inhomogeneous fields. J Magn Reson. 2002;157(1):31–42.

    Article  CAS  Google Scholar 

  7. Peemoeller H, Pintar MM. Two-dimensional time- evolution approach for resolving a composite free-induction decay. J Magn Reson. 1980;41:358–60.

    CAS  Google Scholar 

  8. English AE, Whitthall KP, Joy MLG, Henkelman RM. Quantitative two-dimensional time correlation relaxometry. Magn Reson Med. 1991;22:425–34.

    Article  CAS  Google Scholar 

  9. Rondeau-Mouro C, Kovrlija R, Van Steenberge E, Moussaoui S. Two dimensional IR-FID-CPMG acquisition and adaptation of a maximum entropy reconstruction. J Magn Reson. 2016;265:16–24.

    Article  CAS  Google Scholar 

  10. Santamarina JC, Fratta D. Front Matter. Discrete signals and inverse problems: an introduction for engineers and scientists. Wiley: Chichester, UK; 2005.

    Book  Google Scholar 

  11. Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. New York: Wiley; 1977.

    Google Scholar 

  12. Song YQ, Venkataramanan L, Hurlimann MD, Flaum M, Frulla P, Straley C. T-1-T-2 correlation spectra obtained using a fast two-dimensional laplace inversion. J Magn Reson. 2002;154(2):261–8.

    Article  CAS  Google Scholar 

  13. Kleinberg R, Straley C, Kenyon W, Akkurt R, Farooqui S, editors. Nuclear magnetic resonance of rocks: T1 vs. T2. SPE Annual Technical Conference and Exhibition; 1993.

    Google Scholar 

  14. Peled S, Cory DG, Raymond SA, Kirschner DA, Jolesz FA. Water diffusion, T2, and compartmentation in frog sciatic nerve. Magn Reson Med. 1999;42(5):911.

    Article  CAS  Google Scholar 

  15. Kausik R, Hurlimann MD. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements. J Magn Reson. 2016;270:12–23.

    Article  CAS  Google Scholar 

  16. Galvosas P, Callaghan PT. Multi-dimensional inverse laplace spectroscopy in the NMR of porous media. C R Phys. 2010;11(2):172–80.

    Article  CAS  Google Scholar 

  17. Tønning E, Polders D, Callaghan PT, Engelsen SB. A novel improved method for analysis of 2D diffusion-relaxation data-2D PARAFAC-Laplace decomposition. J Magn Reson. 2007;188(1):10–23.

    Article  CAS  Google Scholar 

  18. Mitchell J, Chandrasekera TC, Gladden LF. Obtaining true transverse relaxation time distributions in high-field NMR measurements of saturated porous media: Removing the influence of internal gradients. J Chem Phys. 2010;132(24):244705.

    Article  CAS  Google Scholar 

  19. Seland JG, Washburn KE, Anthonsen HW, Krane J. Correlations between diffusion, internal magnetic field gradients, and transverse relaxation in porous systems containing oil and water. Phys Rev E. 2004;70(5):051305.

    Article  CAS  Google Scholar 

  20. Washburn KE, Eccles CD, Callaghan PT. The dependence on magnetic field strength of correlated internal gradient relaxation time distributions in heterogeneous materials. J Magn Reson. 2008;194(1):33–40.

    Article  CAS  Google Scholar 

  21. Hills BP. Relaxometry : two-dimensional methods. In: Harris R, Wasylishen RE, editors. Electronic encyclopedia of magnetic resonance. Chichester: John Wiley; 2009.

    Google Scholar 

  22. McDonald PJ, Korb JP, Mitchell J, Monteilhet L. Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study. Phys Rev E. 2005;72(1):011409.

    Article  CAS  Google Scholar 

  23. Monteilhet L, Korb JP, Mitchell J, McDonald PJ. Observation of exchange of micropore water in cement pastes by two-dimensional T-2-T-2 nuclear magnetic resonance relaxometry. Phys Rev E. 2006;74(6):061404.

    Article  CAS  Google Scholar 

  24. Van Landeghem M, Haber A, de Lacaillerie JBD, Blumich B. Analysis of multisite 2D relaxation exchange NMR. Concepts Magn Reson Part A. 2010;36A(3):153–69.

    Article  CAS  Google Scholar 

  25. Chandraselera TC, Mitchell J, Fordham EJ, Gladden LF, Johns ML. Rapid encoding of T-1 with spectral resolution in n-dimensional relaxation correlations. J Magn Reson. 2008;194(1):156–61.

    Article  CAS  Google Scholar 

  26. Venturi L, Warner J, Hills B. Multisliced ultrafast 2D relaxometry. Magn Reson Imaging. 2010;28(7):964–70.

    Article  Google Scholar 

  27. Moraes TB, Monaretto T, Colnago LA. Rapid and simple determination of T-1 relaxation times in time-domain NMR by continuous wave free precession sequence. J Magn Reson. 2016;270:1–6.

    Article  CAS  Google Scholar 

  28. Franck JM, Kausik R, Han S. Overhauser dynamic nuclear polarization-enhanced NMR relaxometry. Microporous Mesoporous Mater. 2013;178:113–8.

    Article  CAS  Google Scholar 

  29. Sternin E. Use of inverse theory algorithms in the analysis of biomembrane NMR data. Methods Membr Lipids. 2007;400:103–25.

    Google Scholar 

  30. Lawson CL, Hanson RJ. Solving least squares problems. Englewood Cliffs: Prentice Hall; 1974. p. 61.

    Google Scholar 

  31. Whittall KP, MacKay AL. Quantitative interpretation of NMR relaxation data. J Magn Reson (1969). 1989;84(1):134–52.

    Article  CAS  Google Scholar 

  32. Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27(3):229–42.

    Article  Google Scholar 

  33. Whittall KP. Analysis of large one-dimensional and two-dimensional relaxation data sets. J Magn Reson Ser A. 1994;110(2):214–8.

    Article  CAS  Google Scholar 

  34. Skilling J. In: Skilling J, editor. Maximum entropy and Bayesian methods. Dordrecht: Kluwer; 1989. p. 45–52.

    Chapter  Google Scholar 

  35. Chouzenoux E, Moussaoui S, Idier J, Mariette F. Efficient maximum entropy reconstruction of nuclear magnetic resonance T1-T2 spectra. IEEE Trans Signal Process. 2010;58(12):6040–51.

    Article  Google Scholar 

  36. Chouzenoux E, Moussaoui S, Idier J, Mariette F, Ieee. Optimization of a maximum entropy criterion for 2D nuclear magnetic resonance reconstruction. 2010 Ieee international conference on acoustics, speech, and signal processing. International conference on acoustics speech and signal processing ICASSP. New York: Ieee; 2010. p. 4154–7.

    Google Scholar 

  37. Bernin D, Topgaard D. NMR diffusion and relaxation correlation methods: new insights in heterogeneous materials. Curr Opin Colloid Interface Sci. 2013;18(3):166–72.

    Article  CAS  Google Scholar 

  38. Marigheto N, Venturi L, Hibberd D, Wright K, Ferrante G, Hills B. Methods for peak assignment in low-resolution multidimensional NMR cross-correlation relaxometry. J Magn Reson. 2007;187(2):327–42.

    Article  CAS  Google Scholar 

  39. Venturi L, Woodward N, Hibberd D, Marigheto N, Gravelle A, Ferrante G, et al. Multidimensional cross-correlation relaxometry of aqueous protein systems. Appl Magn Reson. 2008;33(3):213–34.

    Article  CAS  Google Scholar 

  40. Hills B, Costa A, Marigheto N, Wright K. T 1 − T 2 NMR correlation studies of high-pressure-processed starch and potato tissue. Appl Magn Reson. 2005;28(1–2):13–27.

    Article  CAS  Google Scholar 

  41. Witek M, Peemoeller H, Szymonska J, Blicharska B. Investigation of starch hydration by 2D time domain NMR. Acta Phys Pol A. 2006;109(3):359–64.

    Article  CAS  Google Scholar 

  42. Luyts A, Wilderjans E, Waterschoot J, Van Haesendonck I, Brijs K, Courtin CM, et al. Low resolution H-1 NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chem. 2013;139(1–4):120–8.

    Article  CAS  Google Scholar 

  43. Kovrlija R, Rondeau-Mouro C. Hydrothermal changes in wheat starch monitored by two-dimensional NMR. Food Chem. 2017;214:412–22.

    Article  CAS  Google Scholar 

  44. Kovrlija R, Rondeau-Mouro C. Multi-scale NMR and MRI approaches to characterize starchy products. Food Chem. 2017; submitted. in press.

    Google Scholar 

  45. Venturi L, Hills B. Spatially resolved multidimensional cross-correlation relaxometry. Magn Reson Imaging. 2010;28(2):171–7.

    Article  Google Scholar 

  46. Hills B, Benamira S, Marigheto N, Wright K. T-1-T-2 correlation analysis of complex foods. Appl Magn Reson. 2004;26(4):543–60.

    Article  CAS  Google Scholar 

  47. Serial MR, Blanco Canalis MS, Carpinella M, Valentinuzzi MC, León AE, Ribotta PD, et al. Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chem. 2015;192:950–7.

    Article  CAS  Google Scholar 

  48. Rondeau-Mouro C, Kovrlija R. A new 2D T1-T2 (IR-FID-CPMG) method for the characterization of food and their transformation. Personal communication, XIII International conference on the applications of magnetic resonance in food science, Karlsruhe; 2016. Annual Reports on Nmr Spectroscopy.

    Google Scholar 

  49. Rondeau-Mouro C, Cambert M, Kovrlija R, Musse M, Lucas T, Mariette F. Temperature-associated proton dynamics in wheat starch-based model systems and wheat flour dough evaluated by NMR. Food Bioprocess Technol. 2015;8(4):777–90.

    Article  CAS  Google Scholar 

  50. Métais A, Mariette F. Determination of water self-diffusion coefficient in complex food products by low-field 1H PFG-NMR: comparison between the standard spin-echo sequence and the t1-weighted spin echo sequence. J Magn Reson. 2003;165(2):265–75.

    Article  CAS  Google Scholar 

  51. Mariette F, Lucas T. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams. J Agric Food Chem. 2005;53(5):1317–27.

    Article  CAS  Google Scholar 

  52. Rutledge DN, Barros AS. Method for detecting information in signals: application to two-dimensional time domain NMR data. Analyst. 1998;123(4):551–9.

    Article  CAS  Google Scholar 

  53. Hubbard PL, Watkinson PJ, Creamer LK, Gottwald A, Callaghan PT. In: Engelsen SB, Belton PS, Jakobsen HJ, editors. Two-dimensional laplace inversion NMR technique applied to the molecular properties of water in dry-salted Mozzarella-type cheeses with various salt concentrations. Cambridge: Royal Soc Chemistry; 2005. p. 225–32.

    Google Scholar 

  54. Vandusschoten D, Dejager P, Vanas H. Extracting diffusion constants from echo-time-dependent PFG NMR data using relaxation-time information. J Magn Reson Ser A. 1995;116(1):22–8.

    Article  CAS  Google Scholar 

  55. Duval F, Cambert M, Mariette F. NMR study of tomato pericarp tissue by spin-spin relaxation and water self-diffusion. Appl Magn Reson. 2005;28(1–2):29–40.

    Article  CAS  Google Scholar 

  56. Raffo A, Gianferri R, Barbieri R, Brosio E. Ripening of banana fruit monitored by water relaxation and diffusion H-1-NMR measurements. Food Chem. 2005;89(1):149–58.

    Article  CAS  Google Scholar 

  57. Hills BP, Wright KM. Motional relativity and industrial NMR sensors. J Magn Reson. 2006;178:193–205.

    Article  CAS  Google Scholar 

  58. Marigheto N, Venturi L, Hills B. Two-dimensional NMR relaxation studies of apple quality. Postharvest Biol Technol. 2008;48(3):331–40.

    Article  CAS  Google Scholar 

  59. Hernandez-Sanchez N, Hills BP, Barreiro P, Marigheto N. An NMR study on internal browning in pears. Postharvest Biol Technol. 2007;44(3):260–70.

    Article  CAS  Google Scholar 

  60. Marigheto N, Duarte S, Hills B. NMR relaxation study of avocado quality. Appl Magn Reson. 2005;29(4):687–701.

    Article  CAS  Google Scholar 

  61. Hills BP. Applications of low-field NMR to food science. In: Webb GA, editor. Annual reports on NMR spectroscopy, vol. 58. 2006. p. 177–230.

    Google Scholar 

  62. Marigheto NA, Moates GK, Furfaro ME, Waldron KW, Hills BP. Characterisation of ripening and pressure-induced changes in tomato pericarp using NMR relaxometry. Appl Magn Reson. 2009;36(1):35–47.

    Article  CAS  Google Scholar 

  63. Furfaro M, Marigheto N, Moates G, Cross K, Parker M, Waldron K, et al. Multidimensional NMR cross-correlation relaxation study of carrot phloem and xylem. Part I: peak assignment. Appl Magn Reson. 2009;35(4):521–35.

    Article  Google Scholar 

  64. Furfaro M, Marigheto N, Moates G, Cross K, Parker M, Waldron K, et al. Multidimensional NMR cross-correlation relaxation study of carrot phloem and xylem. Part II: thermal and high-pressure processing. Appl Magn Reson. 2009;35(4):537–47.

    Article  CAS  Google Scholar 

  65. Melado-Herreros A, Encarnacion Fernandez-Valle M, Barreiro P. Non-destructive global and localized 2D T-1/T-2 NMR relaxometry to resolve microstructure in apples affected by watercore. Food Bioprocess Technol. 2015;8(1):88–99.

    Article  CAS  Google Scholar 

  66. Veliyulin E, Aursand IG, Erikson U. Study of fat and water in Atlantic Salmon muscle (Salmo Salar) by low-field NMR and MRI. In: Engelsen SB, Belton PS, Jakobsen SJ, editors. Magnetic resonance in food science the multivariate challenge. Cambridge: The Royal Society of Chemistry; 2005. p. 148.

    Chapter  Google Scholar 

  67. Warner J, Donell S, Wright K, Venturi L, Hills B. The characterisation of mammalian tissue with 2D relaxation methods. Magn Reson Imaging. 2010;28(7):971–81.

    Article  Google Scholar 

  68. Wright KM, Warner J, Venturi L, Piggott RB, Donell S, Hills BP. MRICOM-MRI COntrast Modelling using 2D T1-T2 correlation spectra and relaxation signatures. Magn Reson Imaging. 2010;28(5):661–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Rondeau-Mouro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rondeau-Mouro, C. (2018). 2D TD-NMR Analysis of Complex Food Products. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_90

Download citation

Publish with us

Policies and ethics