Isotope Ratio Monitoring by NMR: Part 2 – New Applications in the Field of Defining Biosynthesis

  • Richard J. Robins
  • Gérald S. Remaud
  • Isabelle Billault
  • Philippe Lesot
Reference work entry


The development of NMR methods to analyze magnetically-active isotopes at natural abundance has made possible the study of biological processes. Isotope fractionation in compounds made by biosynthesis has many different causes, and understanding these can give access both to molecular characterization, as in authenticity and traceability, as well as insight into metabolic pathways and enzyme reaction mechanisms. In this chapter are presented a number of examples to illustrate the type of information that can be gleaned from a study of position-specific isotope fractionation, both in 2H and in 13C. The target molecules range from fatty acids, including post-chain-forming modifications, the analysis of the metabolism of glucose, to the interpretation of isotope profiles to elucidate or predict enzyme reaction mechanisms.


Isotope ratio monitoring by 13C NMR Position-specific 2H/1H ratios Position-specific 13C/12C ratios Isotope fractionation Long-chain fatty acids Glucose metabolism Alkaloid biosynthesis 


  1. 1.
    Remaud GS, Giraudeau P, Lesot P, Akoka S. SNIF-NMR: recent advances In: Webb GA (ed) Modern magnetic resonance, 2nd ed. Springer International Publishing AG 2017. (In press)Google Scholar
  2. 2.
    Schmidt H-L, Robins RJ, Werner RA. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. Isotopes Environ Health Stud. 2015;51(1):155–99.CrossRefGoogle Scholar
  3. 3.
    Roth E. Critical evaluation of the use and analysis of stable isotopes. Pure Appl Chem. 1997;69(8):1753–828.CrossRefGoogle Scholar
  4. 4.
    Cleland WW. Enzyme mechanisms from isotope effects. In: Kohen A, Limbach H-H, editors. Isotope effects in chemistry and biology. 2nd ed. Boca Raton: CRC Taylor and Francis; 2006. p. 915–30.Google Scholar
  5. 5.
    Schmidt H-L. Fundamentals and systematics of the non-statistical distribution of isotopes in natural compounds. Naturwissenschaften. 2003;90(12):537–52.CrossRefGoogle Scholar
  6. 6.
    Schmidt HL, Kexel H. Metabolite pools and metabolic branching as factors of in-vivo isotope discriminations by kinetic isotope effects. Isotopes Environ Health Stud. 1997;33(1–2):19–30.Google Scholar
  7. 7.
    Hayes JM. Isotopic order, biogeochemical processes, and earth history: goldschmidt lecture, Davos, Switzerland, August 2002. Geochim Cosmochim Acta. 2004;68(8):1691–700.CrossRefGoogle Scholar
  8. 8.
    Romek KM, Remaud GS, Silvestre V, Paneth P, Robins RJ. Non-statistical 13C fractionation distinguishes co-incident and divergent steps in the biosynthesis of the alkaloids nicotine and tropine. J Biol Chem. 2016;291:16620–9.CrossRefGoogle Scholar
  9. 9.
    Abelson PH, Hoering T. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci U S A. 1961;47(5):623–32.CrossRefGoogle Scholar
  10. 10.
    Monson K, Hayes J. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis. J Biol Chem. 1980;255(23):11435–41.Google Scholar
  11. 11.
    Monson K, Hayes J. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionation in lipid synthesis as evidence for peroxisomal regulation. J Biol Chem. 1982;257(10):5568–75.Google Scholar
  12. 12.
    Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–14.CrossRefGoogle Scholar
  13. 13.
    Martin GJ, Zhang B-L, Naulet N, Martin ML. Deuterium transfer in the bioconversion of glucose to ethanol studied by specific isotope labeling at the natural abundance level. J Am Chem Soc. 1986;108:5116–22.CrossRefGoogle Scholar
  14. 14.
    Lesot P, Aroulanda C, Billault I. Exploring the analytical potential of NMR spectroscopy in chiral anisotropic media for the study of the natural abundance deuterium distribution in organic molecules. Anal Chem. 2004;76:2827–35.CrossRefGoogle Scholar
  15. 15.
    Lesot P, Aroulanda C, Zimmermann H, Luz Z. Enantiotopic discrimination in the NMR spectrum of prochiral solutes in chiral liquid crystals. Chem Soc Rev. 2015;44:2330–75.CrossRefGoogle Scholar
  16. 16.
    Caytan E, Remaud GS, Tenailleau E, Akoka S. Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta. 2007;71:1016–21.CrossRefGoogle Scholar
  17. 17.
    Royer A, Naulet N, Mabon F, Lees M, Martin G. Stable isotope characterization of olive oils. II – Deuterium distribution in fatty acids studied by nuclear magnetic resonance. J Am Oil Chem Soc. 1999;76(3):365–73.Google Scholar
  18. 18.
    Billault I, Guiet S, Mabon F, Robins RJ. Natural deuterium distribution in long-chain fatty acids is nonstatistical: a site-specific study by quantitative 2H NMR spectroscopy. Chembiochem. 2001;2(6):425–31.CrossRefGoogle Scholar
  19. 19.
    Martin GJ, Lavoine-Hanneguelle S, Mabon F, Martin ML. The fellowship of natural abundance 2H-isotopomers of monoterpenes. Phytochemistry. 2004;65(20):2815–31.CrossRefGoogle Scholar
  20. 20.
    Schmidt H-L, Werner RA, Eisenreich W, Fuganti C, Fronza G, Remaud G, et al. The prediction of isotopic patterns in phenylpropanoids from their precursors and the mechanism of the NIH-shift: basis of the isotopic characteristics of natural aromatic compounds. Phytochemistry. 2006;67:1094–103.CrossRefGoogle Scholar
  21. 21.
    Diomande DG, Martineau E, Gilbert A, Nun P, Murata A, Yamada K, et al. Position-specific isotope analysis of xanthines: a 13C nuclear magnetic resonance method to determine the 13C intramolecular composition at natural abundance. Anal Chem. 2015;87(13):6600–6.CrossRefGoogle Scholar
  22. 22.
    Romek KM, Nun P, Remaud GS, Silvestre V, Taïwe GS, Lecerf-Schmidt F, et al. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol. Proc Natl Acad Sci U S A. 2015;112(27):8296–301.CrossRefGoogle Scholar
  23. 23.
    Baillif V, Robins RJ, Billault I, Lesot P. Assignment of absolute configuration of natural abundance deuterium signals associated with (R)- and (S)-enantioisotopomers in a fatty acid aligned in a chiral liquid crystal: enantioselective synthesis and NMR analysis. J Am Chem Soc. 2006;128(34):11180–7.CrossRefGoogle Scholar
  24. 24.
    Duan J-R, Billault I, Mabon F, Robins RJ. Natural deuterium distribution in fatty acids isolated from peanut seed oil: a site-specific study by quantitative 2H NMR spectroscopy. Chembiochem. 2002;3(8):752–9.CrossRefGoogle Scholar
  25. 25.
    Zhang Yunianta B-L, Martin M. Site-specific isotope fractionation in the characterization of biochemical mechanisms: the glycolytic pathway. J Biol Chem. 1995;270:16023–9.CrossRefGoogle Scholar
  26. 26.
    Baillif V, Robins RJ, Le Feunteun S, Lesot P, Billault I. Investigation of fatty acid elongation and desaturation steps in Fusarium lateritium by quantitative two-dimensional deuterium NMR spectroscopy in chiral oriented media. J Biol Chem. 2009;284:10783–92.CrossRefGoogle Scholar
  27. 27.
    Gilbert A, Silvestre V, Robins R, Remaud G. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–85.CrossRefGoogle Scholar
  28. 28.
    Serhan Z, Martel L, Billault I, Lesot P. Complete determination of natural site-specific enantio-isotopomeric excesses in linoleic acid using natural abundance deuterium 2D NMR in polypeptide mesophases. Chem Commun. 2010;46:6599–601.CrossRefGoogle Scholar
  29. 29.
    Billault I, Mantle PG, Robins RJ. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea. J Am Chem Soc. 2004;126(10):3250–6.CrossRefGoogle Scholar
  30. 30.
    Billault I, Duan J-R, Guiet S, Robins RJ. Quantitative deuterium isotopic profiling at natural abundance indicates mechanistic differences for Δ12-epoxidase and Δ12-desaturase in Vernonia galamensis. J Biol Chem. 2005;280(18):17645–51.CrossRefGoogle Scholar
  31. 31.
    Billault I, Ledru A, Ouetrani M, Serhan Z, Lesot P, Robins RJ. Probing substrate-product relationships by natural abundance deuterium 2D NMR spectroscopy in liquid-crystalline solvents: the case of the epoxidation of linoleate to vernoleate by two different plant enzymes. Anal Bioanal Chem. 2012;402:2985–98.CrossRefGoogle Scholar
  32. 32.
    Markai S, Marchand PA, Mabon F, Baguet E, Billault I, Robins RJ. Natural deuterium distribution in branched-chain medium-length fatty acids is nonstatistical: a site-specific study by quantitative 2H NMR spectroscopy of the fatty acids of capsaicinoids. Chembiochem. 2002;3(2–3):212–8.CrossRefGoogle Scholar
  33. 33.
    Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud GS. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples. New Phytol. 2011;191(2):579–88.CrossRefGoogle Scholar
  34. 34.
    Gilbert A, Robins RJ, Remaud GS, Tcherkez G. Intramolecular 13C-pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Natl Acad Sci U S A. 2012;109:18204–9.CrossRefGoogle Scholar
  35. 35.
    Bayle K, Silvestre V, Akoka S, Remaud GS, Robins RJ. Non-statisitcal 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the pathway exploited. J Biol Chem. 2015;290(7):4118–28.CrossRefGoogle Scholar
  36. 36.
    Boumendjel A, Taïwe G, Bum E, Chabrol T, Beney C, Sinniger V, et al. Occurrence of the synthetic analgesic tramadol in an African medicinal plant. Angew Chem Int Ed. 2013;52:11780–4.CrossRefGoogle Scholar
  37. 37.
    Tenailleau E, Lancelin P, Robins RJ, Akoka S. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. J Agric Food Chem. 2004;52:7782–7.CrossRefGoogle Scholar
  38. 38.
    Chaintreau A, Fieber W, Sommer H, Gilbert A, Yamada K, Yoshida N, et al. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study. Anal Chim Acta. 2013;788:108–13.CrossRefGoogle Scholar
  39. 39.
    Botosoa EP, Blumenstein C, McKenzie DA, Silvestre V, Remaud GS, Kwiecien RA, et al. Quantitative isotopic 13C nuclear magnetic resonance at natural abundance to probe enzyme reaction mechanisms via site-specific isotope fractionation: the case of the chain-shortening reaction for the bioconversion of ferulic acid to vanillin. Anal Biochem. 2009;393:182–8.CrossRefGoogle Scholar
  40. 40.
    Bennett JP, Bertin L, Moulton B, Fairlamb IJ, Brzozowski AM, Walton NJ, et al. A ternary complex of hydroxycinnamoyl-CoA hydratase-hyase (HCHL) with acetyl-Coenzyme A and vanillin gives insights into substrate specificity and mechanism. Biochem J. 2008;414:281–9.CrossRefGoogle Scholar
  41. 41.
    Ma G, Li Y, Wei L, Liu Y, Liu C. A density functional theory study on the catalytic mechanism of hydroxycinnamoyl-CoA hydratase-lyase. Int J Quantum Chem. 2014;114(4):249–54.CrossRefGoogle Scholar
  42. 42.
    Bussy U, Thibaudeau C, Thomas F, Desmurs J-R, Jamin E, Remaud GS, et al. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. Talanta. 2011;85:1909–14.CrossRefGoogle Scholar
  43. 43.
    Schmidt H-L, Gleixner G. Carbon isotope effects on key reactions in plant metabolism and 13C–patterns in natural compounds. In: Griffiths H, editor. Stable isotopes integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific; 1998. p. 13–25.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Richard J. Robins
    • 1
  • Gérald S. Remaud
    • 4
  • Isabelle Billault
    • 2
  • Philippe Lesot
    • 3
    • 5
  1. 1.Elucidation of Biosynthesis by Isotopic Spectrometry Group, Interdisciplinary Chemistry: Synthesis, Analysis, ModelingUniversity of Nantes-CNRS UMR6230NantesFrance
  2. 2.CP3A, ICMMO, UMR CNRS 8182Université Paris Sud, Université Paris-SaclayOrsay cedexFrance
  3. 3.RMN en Milieu Orienté, ICMMO, UMR CNRS 8182Université de Paris Sud, Université Paris-SaclayOrsay cedexFrance
  4. 4.Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM UMR CNRS 6230)Université de NantesNantesFrance
  5. 5.Institut National de ChimieParisFrance

Personalised recommendations