Skip to main content

Residual Dipolar Coupling for Conformational and Dynamic Studies

  • Reference work entry
  • First Online:
  • 439 Accesses

Abstract

Residual dipolar coupling (RDC) is a nuclear magnetic resonance parameter that contains rich information about the structure and dynamics of biomolecules. RDCs are particularly advantageous for the investigation of biomolecular dynamics since they are sensitive to a broader range of timescales than traditional NMR parameters. The observation of RDCs in liquid requires partial alignment of the solute to the static magnetic field, otherwise dipolar coupling would average to zero as a result of isotropic reorientation of the molecule. Partial alignment can be achieved by taking advantage of the physical or chemical properties of the solute or the solvent molecule. The degree and orientation of alignment is described by the alignment tensor, which must be unique to provide new information about the biomolecule. This is important, because there is an inherent structural degeneracy of RDCs, whether being used to study conformation or dynamics. This can be lifted by the inclusion of multiple RDC data sets with distinct alignment tensors. The recent development of rigid lanthanide-containing covalent tags offers a potential solution to structural degeneracy, since unique alignments can be obtained by exchange of the lanthanide or modification of the tag’s attachment site on the biomolecule. This review aims to concisely summarize the most recent developments in the collection, analysis, and validation of RDCs, as well as the potential impact of rigid, lanthanide-containing tags for use in the study of the structure and dynamics of biomolecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kung HC, Wang KY, Goljer I, Bolton PH. Magnetic alignment of duplex and quadruplex DNAs. J Magn Reson Ser B. 1995;109(3):323–5.

    Article  CAS  Google Scholar 

  2. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol. 1997;4(9):732–8.

    Article  CAS  Google Scholar 

  3. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci U S A. 1995;92(20):9279–83.

    Article  CAS  Google Scholar 

  4. Saupe A, Englert G. High-resolution nuclear magnetic resonance spectra of orientated molecules. Phys Rev Lett. 1963;11(10):462.

    Article  CAS  Google Scholar 

  5. Tjandra N, Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997;278(5340):1111–4.

    Article  CAS  Google Scholar 

  6. Prestegard JH, Bougault CM, Kishore AI. Residual dipolar couplings in structure determination of biomolecules. Chem Rev. 2004;104(8):3519–40.

    Article  CAS  Google Scholar 

  7. Newby FN, De Simone A, Yagi-Utsumi M, Salvatella X, Dobson CM, Vendruscolo M. Structure-free validation of residual dipolar coupling and paramagnetic relaxation enhancement measurements of disordered proteins. Biochemistry. 2015;54(46):6876–86.

    Article  CAS  Google Scholar 

  8. Göbl C, Resch M, Strickland M, Hartlmuller C, Viertler M, Tjandra N, et al. Increasing the chemical-shift dispersion of unstructured proteins with a covalent lanthanide shift reagent. Angew Chem Int Ed Engl. 2016;55(47):14847–51.

    Article  CAS  Google Scholar 

  9. Gaponenko V, Altieri AS, Li J, Byrd RA. Breaking symmetry in the structure determination of (large) symmetric protein dimers. J Biomol NMR. 2002;24(2):143–8.

    Article  CAS  Google Scholar 

  10. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992;228(4):1177–92.

    Article  CAS  Google Scholar 

  11. Cornilescu G, Marquardt JL, Ottiger M, Bax A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc. 1998;120(27):6836–7.

    Article  CAS  Google Scholar 

  12. Strickland M, Schwieters CD, Gobl C, Opina AC, Strub MP, Swenson RE, et al. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes. J Biomol NMR. 2016;66(2):125–39.

    Article  CAS  Google Scholar 

  13. Gobl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog Nucl Magn Reson Spectrosc. 2014;80:26–63.

    Article  CAS  Google Scholar 

  14. Wohnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H. Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc. 2003;125(44):13338–9.

    Article  CAS  Google Scholar 

  15. Barthelmes K, Reynolds AM, Peisach E, Jonker HRA, DeNunzio NJ, Allen KN, et al. Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc. 2011;133(4):808–19.

    Article  CAS  Google Scholar 

  16. Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem. 2002;373(4–5):266–76.

    Article  CAS  Google Scholar 

  17. Li QF, Yang Y, Maleckis A, Otting G, Su XC. Thiol-ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem Commun (Camb). 2012;48(21):2704–6.

    Article  CAS  Google Scholar 

  18. Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, et al. Site-specific labeling of proteins with NMR-active unnatural amino acids. J Biomol NMR. 2010;46(1):89–100.

    Article  CAS  Google Scholar 

  19. Lee MD, Dennis ML, Swarbrick JD, Graham B. Enantiomeric two-armed lanthanide-binding tags for complementary effects in paramagnetic NMR spectroscopy. Chem Commun (Camb). 2016;52(51):7954–7.

    Article  CAS  Google Scholar 

  20. Keizers PH, Desreux JF, Overhand M, Ubbink M. Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc. 2007;129(30):9292–3.

    Article  CAS  Google Scholar 

  21. Lee MD, Loh CT, Shin J, Chhabra S, Dennis ML, Otting G, et al. Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy. Chem Sci. 2015;6(4):2614–24.

    Article  CAS  Google Scholar 

  22. Yang F, Wang X, Pan BB, Su XC. Single-armed phenylsulfonated pyridine derivative of DOTA is rigid and stable paramagnetic tag in protein analysis. Chem Commun (Camb). 2016;52(77):11535–8.

    Article  CAS  Google Scholar 

  23. Haussinger D, Huang JR, Grzesiek S. DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc. 2009;131(41):14761–7.

    Article  CAS  Google Scholar 

  24. Opina AC, Strickland M, Lee YS, Tjandra N, Andrew Byrd R, Swenson RE, et al. Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies. Dalton Trans. 2016;45(11):4673–87.

    Article  CAS  Google Scholar 

  25. Tjandra N, Grzesiek S, Bax A. Magnetic field dependence of nitrogen-proton J splittings in N-15-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc. 1996;118(26):6264–72.

    Article  CAS  Google Scholar 

  26. Yao L, Ying J, Bax A. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins. J Biomol NMR. 2009;43(3):161–70.

    Article  CAS  Google Scholar 

  27. Ottiger M, Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson. 1998;131(2):373–8.

    Article  CAS  Google Scholar 

  28. Pervushin K, Riek R, Wider G, Wuthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366–71.

    Article  CAS  Google Scholar 

  29. Lukin JA, Yuan Y, Simplaceanu V, Tsai CH, Ho NT, Ho C. Insights into hemoglobin structure provided by NMR of specifically-labeled samples. Biophys J. 2002;82(1):441a-a.

    Google Scholar 

  30. Fitzkee NC, Bax A. Facile measurement of (1)H-(1)5N residual dipolar couplings in larger perdeuterated proteins. J Biomol NMR. 2010;48(2):65–70.

    Article  CAS  Google Scholar 

  31. Bhattacharya A, Revington M, Zuiderweg ER. Measurement and interpretation of 15N-1H residual dipolar couplings in larger proteins. J Magn Reson. 2010;203(1):11–28.

    Article  CAS  Google Scholar 

  32. Eletsky A, Pulavarti SV, Beaumont V, Gollnick P, Szyperski T. Solution NMR experiment for measurement of (15)N-(1)H residual dipolar couplings in large proteins and supramolecular complexes. J Am Chem Soc. 2015;137(35):11242–5.

    Article  CAS  Google Scholar 

  33. Clore GM, Gronenborn AM, Bax A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson. 1998;133(1):216–21.

    Article  CAS  Google Scholar 

  34. Strickland M, Stanley AM, Wang G, Botos I, Schwieters CD, Buchanan SK, et al. Structure of the NPr:EINNtr complex: mechanism for specificity in paralogous phosphotransferase systems. Structure. 2016;24(12):2127–37.

    Article  CAS  Google Scholar 

  35. Losonczi JA, Andrec M, Fischer MWF, Prestegard JH. Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson. 1999;138(2):334–42.

    Article  CAS  Google Scholar 

  36. Zweckstetter M. NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc. 2008;3(4):679–90.

    Article  CAS  Google Scholar 

  37. Schwieters CD, Kuszewski JJ, Clore GM. Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc. 2006;48(1):47–62.

    Article  CAS  Google Scholar 

  38. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM. The Xplor-NIH NMR molecular structure determination package. J Magn Reson. 2003;160(1):65–73.

    Article  CAS  Google Scholar 

  39. Clore GM, Gronenborn AM, Tjandra N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J Magn Reson. 1998;131(1):159–62.

    Article  CAS  Google Scholar 

  40. Jung YS, Zweckstetter M. Backbone assignment of proteins with known structure using residual dipolar couplings. J Biomol NMR. 2004;30(1):25–35.

    Article  CAS  Google Scholar 

  41. Meiler J, Prompers JJ, Peti W, Griesinger C, Bruschweiler R. Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc. 2001;123(25):6098–107.

    Article  CAS  Google Scholar 

  42. Clore GM, Garrett DS. R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc. 1999;121(39):9008–12.

    Article  CAS  Google Scholar 

  43. Aitio H, Annila A, Heikkinen S, Thulin E, Drakenberg T, Kilpelainen I. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Protein Sci. 1999;8(12):2580–8.

    Article  CAS  Google Scholar 

  44. Annila A, Aitio H, Thulin E, Drakenberg T. Recognition of protein folds via dipolar couplings. J Biomol NMR. 1999;14(3):223–30.

    Article  CAS  Google Scholar 

  45. Andrec M, Du PC, Levy RM. Protein structural motif recognition via NMR residual dipolar couplings. J Am Chem Soc. 2001;123(6):1222–9.

    Article  CAS  Google Scholar 

  46. Delaglio F, Kontaxis G, Bax A. Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc. 2000;122(9):2142–3.

    Article  CAS  Google Scholar 

  47. Hus JC, Marion D, Blackledge M. Determination of protein backbone structure using only residual dipolar couplings. J Am Chem Soc. 2001;123(7):1541–2.

    Article  CAS  Google Scholar 

  48. Ozenne V, Bauer F, Salmon L, Huang JR, Jensen MR, Segard S, et al. Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics. 2012;28(11):1463–70.

    Article  CAS  Google Scholar 

  49. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, et al. NMR structure determination for larger proteins using backbone-only data. Science. 2010;327(5968):1014–8.

    Article  CAS  Google Scholar 

  50. Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT. Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat Methods. 2015;12(8):751–4.

    Article  CAS  Google Scholar 

  51. Muntener T, Haussinger D, Selenko P, Theillet FX. In-cell protein structures from 2D NMR experiments. J Phys Chem Lett. 2016;7(14):2821–5.

    Article  CAS  Google Scholar 

  52. Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, et al. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2+ by Tb3+. FEBS Lett. 1999;460(3):519–26.

    Article  CAS  Google Scholar 

  53. Peti W, Meiler J, Bruschweiler R, Griesinger C. Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc. 2002;124(20):5822–33.

    Article  CAS  Google Scholar 

  54. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH. NMR evidence for slow collective motions in cyanometmyoglobin. Nat Struct Biol. 1997;4(4):292–7.

    Article  CAS  Google Scholar 

  55. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KF, Becker S, et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science. 2008;320(5882):1471–5.

    Article  CAS  Google Scholar 

  56. Fischer MW, Losonczi JA, Weaver JL, Prestegard JH. Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry. 1999;38(28):9013–22.

    Article  CAS  Google Scholar 

  57. Maciejewski M, Tjandra N, Barlow PN. Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings. Biochemistry. 2011;50(38):8138–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Tjandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Strickland, M., Tjandra, N. (2018). Residual Dipolar Coupling for Conformational and Dynamic Studies. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_86

Download citation

Publish with us

Policies and ethics