Advertisement

Estimation of Quality in Frozen Fish by Low Field NMR

  • Mercedes Careche
  • Isabel Sánchez-Alonso
  • Iciar Martinez
Reference work entry

Abstract

This chapter addresses the potential of LF 1H NMR relaxometry to estimate the quality of fish products during freezing and frozen storage. This technique has shown to be, at least for some fish species, sensitive to changes occurring at subzero temperatures and the variation in the relaxation times kept a relationship with documented effects on the morphological and biochemical alterations of fish muscle. Moreover, the dependency of the relaxometry data on the freezing time and temperature has allowed the identification of indicators suitable for the estimation of shelf life, thus contributing to the increasing range of applications of the T2 decay signals.

Keywords

Fish Muscle Freezing Frozen storage Shelf life Quality LF NMR 

Notes

Acknowledgements

This work has been partly financed by Spanish ANIRISK (AGL2015–68248-C1) MINECO/FEDER.

References

  1. 1.
    Peri C. The universe of food quality. Food Qual Prefer. 2006;17:3–8.CrossRefGoogle Scholar
  2. 2.
    Grunert KG. Food quality-a means-end perspective. Food Qual Prefer. 1995;6:171–6.CrossRefGoogle Scholar
  3. 3.
    Shenouda SYK. Theories of protein denaturation during frozen storage of fish flesh. Advances in Food Research. 1980;26:275–311.CrossRefGoogle Scholar
  4. 4.
    Haard NF. Biochemical reactions in fish muscle during frozen storage. In: Bligh EG, editor. Seafood science and technology. Canada: fishing news books. London: Blackwell Scientific Publications; 1992. p. 176–209.Google Scholar
  5. 5.
    Sikorski ZE, Kolakowska A. Changes in proteins in frozen stored fish. In: Zikorski ZE, Sun Pan B, Shahidi F, editors. Seafood proteins. New York: Chapman and Hall; 1994. p. 99–112.CrossRefGoogle Scholar
  6. 6.
    Carmona P, Sánchez-Alonso I, Careche M. Chemical changes during freezing and frozen storage of fish investigated by vibrational spectroscopy. In: ECY L-C, Griffiths P, Chalmers JM, editors. Applications of vibrational spectroscopy in food science. New York: Wiley; 2010. p. 229–40.Google Scholar
  7. 7.
    Jaczynski J, Tahergorabi R, Hunt AL, Park JW. Safety and quality of frozen aquatic food products. In: Da-Wen S, editor. Handbook of frozen food processing and packaging. 2nd ed. Boca Raton: CRC Press; 2012. p. 343–85.Google Scholar
  8. 8.
    Careche M, Herrero AM, Rodríguez-Casado A, Del Mazo ML, Carmona P. Structural changes of hake (Merluccius merluccius L.) fillets: effects of freezing and frozen storage. J Agric Food Chem. 1999;47:952–9.CrossRefGoogle Scholar
  9. 9.
    Herrero AM, Carmona P, Careche M. Raman spectroscopic study of structural changes in hake (Merluccius merluccius L.) muscle proteins during frozen storage. J Agric Food Chem. 2004;52:2147–53.CrossRefGoogle Scholar
  10. 10.
    Herrero AM, Carmona P, García ML, Solas MT, Careche M. Ultrastructural changes and structure and mobility of myowater in frozen-stored hake (Merluccius merluccius L.) muscle: relationship with functionality and texture. J Agric Food Chem. 2005;53:2558–66.CrossRefGoogle Scholar
  11. 11.
    Howgate P. Fish. In: Vaughan JG, editor. Food miscroscopy. London: Academic Press; 1979. p. 343–92.Google Scholar
  12. 12.
    García ML, Martín-Benito J, Solas MT, Fernández B. Ultrastructure of the myofibrillar component in cod (Gadus morhua L.) and hake (Merluccius merluccius L.) stored at −20° C as a function of time. J Agric Food Chem. 1999;47:3809–15.CrossRefGoogle Scholar
  13. 13.
    Sánchez-Alonso I, Carmona P, Careche M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chem. 2012;132:160–7.CrossRefGoogle Scholar
  14. 14.
    Bremner HA. Toward practical definitions of quality for food science. Crit Rev Food Sci Nutr. 2000;40:83–90.CrossRefGoogle Scholar
  15. 15.
    Bertram HC, Andersen HJ. Applications of NMR in meat science. In: Webb GA, editor. Annual reports on NMR spectroscopy. San Diego: Elsevier; 2004. p. 157–202.Google Scholar
  16. 16.
    Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – a review. Meat Sci. 2011;89:111–24.CrossRefGoogle Scholar
  17. 17.
    Erikson U, Standal IB, Aursand IG, Veliyulin E, Aursand M. Use of NMR in fish processing optimization: a review of recent progress. Magn Reson Chem. 2012;50:471–80.CrossRefGoogle Scholar
  18. 18.
    Kirtil E, Oztop MH. 1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing. Food Eng Rev. 2016;8:1–22.CrossRefGoogle Scholar
  19. 19.
    Belton PS. Spectroscopic approaches to the understanding of water in foods. Food Rev Int. 2011;27:170–91.CrossRefGoogle Scholar
  20. 20.
    Hills BP, Takacs SF, Belton PS. A new interpretation of proton NMR relaxation time measurements of water in food. Food Chem. 1990;37:95–111.CrossRefGoogle Scholar
  21. 21.
    Jepsen SM, Pedersen HT, Engelsen SB. Application of chemometrics to low-field 1H NMR relaxation data of intact fish flesh. J Sci Food Agric. 1999;79:1793–802.CrossRefGoogle Scholar
  22. 22.
    Jensen KN, Guldager HS, Jørgensen BM. Three-way modelling of NMR relaxation profiles from thawed cod muscle. J Aquat Food Prod Technol. 2002;11:201–14.CrossRefGoogle Scholar
  23. 23.
    Hills BP, Takacs SF, Belton PS. The effects of proteins on the proton N.M.R. transverse relaxation time of water. II. Protein aggregation. Molecular Physics. 1989;67:919–37.CrossRefGoogle Scholar
  24. 24.
    Hills BP, Takacs SF, Belton PS. The effects of proteins on the proton N.M.R. transverse relaxation time of water I. Native bovine serum albumin. Molecular Physics. 1989;67:903–18.CrossRefGoogle Scholar
  25. 25.
    Belton PS, Jackson RR, Packer KJ. Pulsed NMR studies of water in striated muscle: I Transverse nuclear spin relaxation-times and freezing effects. Biochim Biophys Acta. 1972;286:16–25.CrossRefGoogle Scholar
  26. 26.
    Venturi L, Rocculi P, Cavani C, Placucci G, Rosa MD, Cremonini MA. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance. J Agric Food Chem. 2007;55:10572–8.CrossRefGoogle Scholar
  27. 27.
    Gudjónsdóttir M, Lauzon HL, Magnusson H, Sveinsdottir K, Arason S, Martinsdottir E, Rustad T. Low field nuclear magnetic resonance on the effect of salt and modified atmosphere packaging on cod (Gadus morhua) during superchilled storage. Food Res Int. 2011;44:241–9.CrossRefGoogle Scholar
  28. 28.
    Erikson U, Kjørsvik E, Bardal T, Digre H, Schei M, Søreide TS, Aursand IG. Quality of Atlantic cod frozen in cell alive system, air-blast, and cold storage freezers. J Aquat Food Prod Technol. 2016;25:1001–20.CrossRefGoogle Scholar
  29. 29.
    Erikson U, Veliyulin E, Singstad TE, Aursand M. Salting and desalting of fresh and frozen-thawed cod (Gadus morhua) fillets: a comparative study using 23Na NMR, 23Na MRI, low-field 1H NMR, and physicochemical analytical methods. J Food Sci. 2004;69:E107–14.CrossRefGoogle Scholar
  30. 30.
    Andersen CM, Rinnan A. Distribution of water in fresh cod. LWT-Food Sci Technol. 2002;35:687–96.CrossRefGoogle Scholar
  31. 31.
    Gudjónsdóttir M, Arason S, Rustad T. The effects of pre-salting methods on water distribution and protein denaturation of dry salted and rehydrated cod – a low-field NMR study. J Food Eng. 2011;104:23–9.CrossRefGoogle Scholar
  32. 32.
    Aursand IG, Gallart-Jornet L, Erikson U, Axelson DE, Rustad T. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): a low-field 1H NMR study. J Agric Food Chem. 2008;56:6252–60.CrossRefGoogle Scholar
  33. 33.
    Digre H, Erikson U, Aursand IG, Gallart-Jornet L, Misimi E, Rustad T. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality. J Food Sci. 2011;76:S89–S100.CrossRefGoogle Scholar
  34. 34.
    Lambelet P, Renevey F, Kaabi C, Raemy A. Low-field nuclear magnetic resonance relaxation study of stored or processed cod. J Agric Food Chem. 1995;43:1462–6.CrossRefGoogle Scholar
  35. 35.
    Yano S, Tanaka M, Suzuki N, Kanzaki Y. Texture change of beef and salmon meats caused by refrigeration and use of pulse NMR as an index of taste. Food Sci Technol Res. 2002;8:137–43.CrossRefGoogle Scholar
  36. 36.
    Aursand IG, Veliyulin E, Bocker U, Ofstad R, Rustad T, Erikson U. Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: effects of raw material quality and brine salting. J Agric Food Chem. 2009;57:46–54.CrossRefGoogle Scholar
  37. 37.
    Sánchez-Alonso I, Moreno P, Careche M. Low field NMR relaxometry in hake (Merluccius merluccius, L.) muscle after different freezing and storage conditions. Food Chem. 2014;153:250–7.CrossRefGoogle Scholar
  38. 38.
    Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, Careche M. Low-field nuclear magnetic resonance of proton (1H LF NMR) relaxometry for monitoring the time and temperature history of frozen hake (Merluccius merluccius L.) muscle. Food Bioprocess Technol. 2015;8:2137–45.CrossRefGoogle Scholar
  39. 39.
    Åsli M, Ofstad R, Böcker U, Jessen F, Einena O, Mørkøre T. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle. J Sci Food Agric. 2016;96:1252–9.CrossRefGoogle Scholar
  40. 40.
    Aursand IG, Erikson U, Veliyulin E. Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: a low-field 1H NMR and 1H/23Na MRI study. Food Chem. 2010;120:482–9.CrossRefGoogle Scholar
  41. 41.
    Løje H, Green-Petersen D, Nielsen J, Jørgensen BM, Jensen KN. Water distribution in smoked salmon. J Sci Food Agric. 2007;87:212–7.CrossRefGoogle Scholar
  42. 42.
    Jensen KN, Jørgensen BM, Nielsen HH, Nielsen J. Water distribution and mobility in herring muscle in relation to lipid content, season, fishing ground and biological parameters. J Sci Food Agric. 2005;85:1259–67.CrossRefGoogle Scholar
  43. 43.
    Gudjónsdóttir M, Gunnlaugsson VN, Finnbogadottir GA, Sveinsdottir K, Magnusson H, Arason S, Rustad T. Process control of lightly salted wild and farmed Atlantic cod (Gadus morhua) by brine injection, brining, and freezing – a low field NMR study. J Food Sci. 2010;75:E527–36.CrossRefGoogle Scholar
  44. 44.
    Zang J, Xu Y, Xia W, Jiang Q. The impact of desmin on texture and water-holding capacity of ice-stored grass carp (Ctenopharyngodon idella) fillet. Int J Food Sci Technol. 2016;52:464–71.CrossRefGoogle Scholar
  45. 45.
    Gudjónsdóttir M, Karlsdóttir MG, Arason S, Rustad T. Injection of fish protein solutions of fresh saithe (Pollachius virens) fillets studied by low field nuclear magnetic resonance and physicochemical measurements. J Food Sci Technol-Mysore. 2013;50:228–38.CrossRefGoogle Scholar
  46. 46.
    Nikoo M, Regenstein JM, Ghomi MR, Benjakul S, Yang N, Xu X. Study of the combined effects of a gelatin-derived cryoprotective peptide and a non-peptide antioxidant in a fish mince model system. LWT-Food Sci Technol. 2015;60:358–64.CrossRefGoogle Scholar
  47. 47.
    Nott KP, Evans SD, Hall LD. Quantitative magnetic resonance imaging of fresh and frozen-thawed trout. Magn Reson Imaging. 1999;17:445–55.CrossRefGoogle Scholar
  48. 48.
    Sánchez-Alonso I, Martinez I, Sánchez-Valencia J, Careche M. Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chem. 2012;135:1626–34.CrossRefGoogle Scholar
  49. 49.
    Steen C, Lambelet P. Texture changes in frozen cod mince measured by low-field nuclear magnetic resonance spectroscopy. J Sci Food Agric. 1997;75:268–72.CrossRefGoogle Scholar
  50. 50.
    Burgaard MG, Jørgensen BM. Effect of temperature on quality-related changes in cod (Gadus morhua) during short- and long-term frozen storage. J Aquat Food Prod Technol. 2010;19:249–63.CrossRefGoogle Scholar
  51. 51.
    Martino MN, Zaritzky NE. Ice recrystallization in a model system and in frozen muscle tissue. Cryobiology. 1989;26:138–48.CrossRefGoogle Scholar
  52. 52.
    Li Y, Jia W, Zhang CH, Li X, Wang JZ, Zhang DQ, et al. Fluctuated low temperature combined with high-humidity thawing to reduce physicochemical quality deterioration of beef. Food and Bioprocess Technol. 2014;7:3370–80.CrossRefGoogle Scholar
  53. 53.
    Hurling R, McArthur H. Thawing, refreezing and frozen storage effects on muscle functionality and sensory attributes of frozen cod (Gadus morhua). J Food Sci. 1996;61:1289–96.CrossRefGoogle Scholar
  54. 54.
    Carneiro CD, Marsico ET, Ribeiro RDR, Conte CA, Alvares TS, De Jesus EFO. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and low field nuclear magnetic resonance (LF H-1 NMR). LWT-Food Sci Technol. 2013;50:401–7.CrossRefGoogle Scholar
  55. 55.
    Carneiro CD, Marsico ET, Ribeiro RDR, Conte CA, Alvares TS, De Jesus EFO. Quality attributes in shrimp treated with polyphosphate after thawing and cooking: a study using physicochemical analytical methods and low-field H-1 NMR. J Food Process Eng. 2013;36:492–9.CrossRefGoogle Scholar
  56. 56.
    Andersen CM, Jorgensen BM. On the relation between water pools and water holding capacity in cod muscle. J Aquat Food Prod Technol. 2004;13:13–23.CrossRefGoogle Scholar
  57. 57.
    Taoukis PS, Labuza TP, Saguy IS. Kinetics of food deterioration and shelf-life prediction. In: Valentas KJ, Rotstein E, Singh RD, editors. The handbook of food engineering practice. New York: CRC Press; 1997. p. 2–75.Google Scholar
  58. 58.
    Careche M, Carmona P, Sanchez-Alonso I. Monitoring the time and temperature history of frozen hake (Merluccius merluccius, L.) muscle by FTIR spectroscopy of the lipid fraction. Food Bioprocess Technol. 2015;8:112–9.CrossRefGoogle Scholar
  59. 59.
    Cheng JH, Dai Q, Sun DW, Zeng XA, Liu D, Pu HB. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol. 2013;34:18–31.CrossRefGoogle Scholar
  60. 60.
    Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, Careche M. Estimation of frozen storage time or temperature by kinetic modeling of the Kramer shear resistance and water holding capacity (WHC) of hake (Merluccius merluccius, L.) muscle. J Food Eng. 2014;120:37–43.CrossRefGoogle Scholar
  61. 61.
    Sánchez-Alonso I, Moreno P, Careche, M. Low field nuclear magnetic resonance (LF NMR) spectroscopic analysis of hake (Merluccius merluccius, L.) upon freezing. A possibility for authentication of fresh vs thawed muscle. 4th Trans-Atlantic Fisheries Technology Conference (TAFT), Clearwater Beach, FL, 30 Oct–2 Nov 2012.Google Scholar
  62. 62.
    Careche M, Sánchez-Alonso I, González-Muñoz I, Navas A, Tejada M. LF NMR relaxometry can be used to verify that fish have been subjected to freezing in order to comply with EU regulation about prevention of parasite infection. 46th WEFTA Meeting, Split, 12–14 Oct 2016.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mercedes Careche
    • 1
  • Isabel Sánchez-Alonso
    • 1
  • Iciar Martinez
    • 2
    • 3
    • 4
  1. 1.Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC)MadridSpain
  2. 2.Plentzia Marine Research StationUniversity of the Basque Country UPV-EHUGorlizSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  4. 4.Norwegian College of Fishery ScienceUniversity of TromsøTromsøNorway

Personalised recommendations