Advertisement

Isotope Ratio Monitoring by NMR: Part 1 – Recent Advances

  • Gérald S. Remaud
  • Patrick Giraudeau
  • Philippe Lesot
  • Serge Akoka
Reference work entry

Abstract

Many physical and chemical processes in living systems are accompanied by isotopic fractionation on common atoms. The determination of isotopic abundance is therefore an unrivaled method to probe the (bio)chemical origin of natural or synthetic molecules. NMR has become a major analytical technique in stable isotope analysis, since SNIF-NMR (site-specific natural isotopic fractionation studied by nuclear magnetic resonance) was introduced by Profs. Martin and Martin in the 1980s. Renamed irm-NMR (isotopic ratio measurement by NMR), it is a major authentication tool and has been recognized as an official method to detect subtle food adulteration. It is the only generic analytical technique that can quantify each isotopomer without degradation; it therefore provides significant additional information in the many cases in which the average isotopic distribution is insufficient to differentiate samples from different origins and/or to understand (bio)synthetic pathways. In the last 30 years, irm-NMR has undergone numerous methodological developments, which have extended its field of application. In particular, its extension to 13C isotopic NMR and to anisotropic 2H NMR has widened the range of samples that can be studied. This chapter describes the general principles of irm-NMR and highlights the recent methodological developments (reference methods, pulse sequences) and the original applications stemming from these advances. Lastly, perspectives are discussed, based on some of these most recent methodological advances in NMR.

Keywords

Irm-NMR Isotope ratio Isotopic abundance Isotopic composition Isotopic fractionation 2D NMR INEPT Anisotropic NMR interaction Lyotropic chiral liquid crystals Enantio-isotopomers Fatty acid methyl ester PSIA 

References

  1. 1.
    Schmidt H-L, Robins RJ, Werner RA. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. Isotopes Environ Health Stud. 2015;51:155–99.CrossRefGoogle Scholar
  2. 2.
    Martin GJ, Martin ML. Deuterium labelling at the natural abundance level as studied by high field quantitative 2H NMR. Tetrahedron Lett. 1981;22:3525–8.CrossRefGoogle Scholar
  3. 3.
    Martin GJ, Martin ML. Stable isotope analysis of food and beverages by nuclear magnetic resonance. Annu Rep NMR Spectrosc. 1995;31:81–104.CrossRefGoogle Scholar
  4. 4.
    Robins RJ, Remaud G, Billault I, Lesot P. Isotope ratio monitoring by NMR. Part 2: new applications in the field of defining biosynthesis. In: Webb GA, editor. Modern magnetic resonance. 2nd ed. Cham: Springer; 2017.Google Scholar
  5. 5.
    Caytan E, Remaud GS, Tenailleau E, Akoka S. Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta. 2007;71:1016–21.CrossRefGoogle Scholar
  6. 6.
    Thomas F, Randet C, Gilbert A, Silvestre V, Jamin E, Akoka S, et al. Improved characterization of the botanical origin of sugar by Carbon-13 SNIF-NMR applied to ethanol. J Agric Food Chem. 2010;58:11580–5.CrossRefGoogle Scholar
  7. 7.
    Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–60.CrossRefGoogle Scholar
  8. 8.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, et al. Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem. 2016;88:293–306.Google Scholar
  9. 9.
    Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Natl Acad Sci U S A. 2012;109:18204–9.CrossRefGoogle Scholar
  10. 10.
    Chen Z, Nieves-Quinones Y, Waas JR, Singleton DA. Isotope effects, dynamic matching, and solvent dynamics in a wittig reaction. Betaines as bypassed intermediates. J Am Chem Soc. 2014;136:13122–5.CrossRefGoogle Scholar
  11. 11.
    Martin ML, Akoka S, Martin GJ. SNIF-NMR – Part 1: principles. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2006. p. 1629–36.Google Scholar
  12. 12.
    Cookson DJ, Smith BE. Optimal experimental parameters for quantitative pulse Fourier transform proton nuclear magnetic resonance spectrometry. Anal Chem. 1982;54:2591–3.CrossRefGoogle Scholar
  13. 13.
    Tenailleau E, Lancelin P, Robins RJ, Akoka S. NMR approach to the quantification of nonstatistical 13C distribution in natural products: vanillin. Anal Chem. 2004;76:3818–25.CrossRefGoogle Scholar
  14. 14.
    Tenailleau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR. J Magn Reson. 2007;185:50–8.CrossRefGoogle Scholar
  15. 15.
    Remaud GS, Akoka S. Isotope ratio monitoring by NMR. Part 3: new applications for traceability of active pharmaceutical ingredients. In: Webb GA, editor. Modern magnetic resonance. 2nd ed. Cham: Springer; 2017.Google Scholar
  16. 16.
    Chaintreau A, Fieber W, Sommer H, Gilbert A, Yamada K, Yoshida N, et al. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study. Anal Chim Acta. 2013;788:108–13.CrossRefGoogle Scholar
  17. 17.
    Thibaudeau C, Remaud G, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;2010:5582–90.CrossRefGoogle Scholar
  18. 18.
    Bussy U, Thibaudeau C, Thomas F, Desmurs J-R, Jamin E, Remaud G, et al. Isotopic finger-printing of active pharmaceutical ingredients by 13C NMR and polarization transfer techniques as a tool to fight against counterfeiting. Talanta. 2011;85:1909–14.CrossRefGoogle Scholar
  19. 19.
    Giraudeau P. Quantitative 2D liquid-state NMR. Magn Reson Chem. 2014;52:259–72.CrossRefGoogle Scholar
  20. 20.
    Lesot P, Aroulanda C, Zimmermann H, Luz Z. Enantiotopic discrimination in the NMR spectrum of prochiral solutes in chiral liquid crystals. Chem Soc Rev. 2015;44:2330–75.CrossRefGoogle Scholar
  21. 21.
    Lesot P, Serhan Z, Billault I. Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters. Anal Bioanal Chem. 2011;399:1187–200.CrossRefGoogle Scholar
  22. 22.
    Fauhl C, Wittkowski RZ. On line H-1-NMR to facilitate tube preparation in SNIF-NMR analysis. Lebensm Unters Forch. 1996;203:541–5.CrossRefGoogle Scholar
  23. 23.
    Bayle K, Grand M, Chaintreau A, Robins RJ, Fieber W, Sommer H, et al. Internal referencing for 13C position-specific isotope analysis measured by NMR spectrometry. Anal Chem. 2015;87:7550–4.CrossRefGoogle Scholar
  24. 24.
    Billault I, Robins RJ, Akoka S. Determination of deuterium isotope ratios by quantitative 2H NMR spectroscopy: the ERETIC method as a generic reference signal. Anal Chem. 2002;74:5902–6.CrossRefGoogle Scholar
  25. 25.
    Le Grand F, George G, Akoka S. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate. J Agric Food Chem. 2005;53:5125–9.CrossRefGoogle Scholar
  26. 26.
    Bejjani J, Balaban M, Rizk T. A sharper characterization of the geographical origin of Lebanese wines by a new interpretation of the hydrogen isotope ratios of ethanol. Food Chem. 2014;165:134–9.CrossRefGoogle Scholar
  27. 27.
    Jamin E, Martin F, Martin GG, Fauhl A-IC. Determination of site-specific (deuterium/hydrogen) ratios in vanillin by 2H-nuclear magnetic resonance spectrometry: collaborative study. J AOAC Int. 2007;90:187–95.Google Scholar
  28. 28.
    Thomas F, Jamin E. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: international collaborative study report. Anal Chim Acta. 2009;649:98–105.CrossRefGoogle Scholar
  29. 29.
    Jamin E, Martin GJ. SNIF-NMR – Part 4: applications in an economic context: the eample of wines, spirits, and juices. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2006. p. 1669–80.Google Scholar
  30. 30.
    Monakhova YB, Godelmann R, Hermann A, Kuballa T, Cannet C, Schäfer H, et al. Synergistic effect of the simultaneous chemometric analysis of 1H NMR spectroscopic and stable isotope (SNIF-NMR, 18O, 13C) data: application to wine analysis. Anal Chim Acta. 2014;833:29–39.CrossRefGoogle Scholar
  31. 31.
    Camin F, Dordevic N, Wehrens R, Neteler M, Delucchi L, Postma G, et al. Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine. Anal Chim Acta. 2015;853:384–90.CrossRefGoogle Scholar
  32. 32.
    Betson TR, Augusti A, Schleucher J. Quantification of deuterium isotopomers of tree-ring cellulose using nuclear magnetic resonance. Anal Chem. 2006;78:8406–11.CrossRefGoogle Scholar
  33. 33.
    Augusti A, Betson TR, Schleucher J. Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings. Chem Geol. 2008;252:1–8.CrossRefGoogle Scholar
  34. 34.
    Ehlers I, Augusti A, Betson TR, Nilsson MB, Marshall JD, Schleucher J. Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. Proc Natl Acad Sci U S A. 2015;112:15585–90.Google Scholar
  35. 35.
    Lesot P, Aroulanda C, Billault I. Exploring the analytical potential of NMR spectroscopy in chiral anisotropic media for the study of the natural abundance deuterium distribution in organic molecules. Anal Chem. 2004;76:2827–35.CrossRefGoogle Scholar
  36. 36.
    Lesot P, Baillif V, Billault I. Combined analysis of four C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents. Anal Chem. 2008;80:2963–72.CrossRefGoogle Scholar
  37. 37.
    Serhan Z, Borgogno A, Billault I, Ferrarini A, Lesot P. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches. Chem A Eur J. 2012;18:117–26.CrossRefGoogle Scholar
  38. 38.
    Serhan Z, Martel L, Billault I, Lesot P. Complete determination of natural site-specific enantio-isotopomeric excesses in linoleic acid using natural abundance deuterium 2D NMR in polypeptide mesophases. Chem Commun. 2010;46:6599–601.CrossRefGoogle Scholar
  39. 39.
    Baillif V, Robins RJ, Le Feunteun S, Lesot P, Billault I. Investigation of fatty acid elongation and desaturation steps in fusarium lateritium by quantitative two-dimensional deuterium NMR spectroscopy in chiral oriented media. J Biol Chem. 2009;284:10783–92.CrossRefGoogle Scholar
  40. 40.
    Lesot P, Serhan Z, Aroulanda C, Billault I. Analytical contribution of NAD 2D-NMR spectroscopy in polypeptide mesophases to the investigation of triglycerides. Magn Reson Chem. 2012;50:S2–S11.CrossRefGoogle Scholar
  41. 41.
    Gilbert A, Silvestre V, Robins RJ, Remaud GS. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–85.CrossRefGoogle Scholar
  42. 42.
    Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, et al. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 2011;34:1104–12.CrossRefGoogle Scholar
  43. 43.
    Diomande DG, Martineau E, Gilbert A, Nun P, Murata A, Yamada K, et al. Position-specific isotope analysis of xanthines: a 13C nuclear magnetic resonance method to determine the 13C intramolecular composition at natural abundance. Anal Chem. 2015;87:6600–6.CrossRefGoogle Scholar
  44. 44.
    Albertino A, Barge A, Cravotto G, Genzini L, Gobetto R, Vincenti M. Natural origin of ascorbic acid: validation by 13C NMR and IRMS. Food Chem. 2009;112:715–20.CrossRefGoogle Scholar
  45. 45.
    Julien M, Nun P, Höhener P, Parinet J, Robins RJ, Remaud GS. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry. Talanta. 2016;147:383–9.CrossRefGoogle Scholar
  46. 46.
    Merchak N, Silvestre V, Rouger L, Giraudeau P, Rizk T, Bejjani J, et al. Precise and rapid isotopomic analysis by 1H–13C 2D NMR: application to triacylglycerol matrices. Talanta. 2016;156–157:239–44.CrossRefGoogle Scholar
  47. 47.
    Lesot P, Lafon O. Experimental detection of achiral and chiral naturally abundant 13C–2H isotopomers by 2D-NMR in liquids and chiral oriented solvents. Anal Chem. 2012;84:4569–73.CrossRefGoogle Scholar
  48. 48.
    Eshuis N, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Wijmenga SS, Tessari M. Quantitative trace analysis of complex mixtures using SABRE hyperpolarization. Angew Chem Int Ed. 2015;54:1481–4.CrossRefGoogle Scholar
  49. 49.
    Bornet A, Maucourt M, Deborde C, Jacob D, Milani J, Vuichoud B, et al. Highly repeatable dissolution dynamic nuclear polarization for heteronuclear NMR metabolomics. Anal Chem. 2016;88:6179–83.CrossRefGoogle Scholar
  50. 50.
    Gouilleux B, Charrier B, Akoka S, Felpin F-X, Rodriguez-Zubiri M, Giraudeau P. Ultrafast 2D NMR on a benchtop spectrometer: applications and perspectives. Trends Anal Chem. 2016;83:65–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gérald S. Remaud
    • 1
  • Patrick Giraudeau
    • 1
    • 2
  • Philippe Lesot
    • 3
    • 4
  • Serge Akoka
    • 1
  1. 1.Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM UMR CNRS 6230)Université de NantesNantesFrance
  2. 2.Institut Universitaire de FranceParisFrance
  3. 3.RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université de Paris-Sud/Université Paris-SaclayOrsayFrance
  4. 4.Institut National de ChimieParisFrance

Personalised recommendations