Advertisement

High-Resolution NMR as Tool to Study Enzyme-Catalyzed Production of Fatty Acid Ethyl Esters from Marine Oils

  • Inger B. Standal
  • Ana K. Carvajal
  • Revilija Mozuraityte
  • Ivar Storrø
  • Trond Størseth
  • Elham Abbasi
  • Marit Aursand
Reference work entry

Abstract

In this work, 1H and 13C NMR methods have been used to study the enzyme-catalyzed production of fatty acid ethyl esters from herring and seal oils, respectively. The reaction progress and the regiospecificity of the lipase from Candida antarctica (Novozym 435) have been studied. The fact that NMR differentiates acylglycerol isomers such as 1-MAG vs. 2-MAG and 1,2-DAG vs. 1,3-DAG, and different ethyl esters, (DHA, EPA vs. others ethyl esters) were essential in the evaluation of the regiospecificity and fatty acid-selectivity of the lipase. High-resolution NMR is shown to be a valuable tool to study process kinetics and in the optimization of enzymatic processes.

Keywords

NMR Marine oils Enzymatic modification 

References

  1. 1.
    Norwegian Scientific Committee for Food Safety. Evaluation of negative and positive health effects of n-3 fatty acids as constituents of food supplements and fortified foods. 2011. http://www.vkm.no/dav/c7a41adb79.pdf. Accessed 19 Sep 2016.
  2. 2.
    Grand View Research. Omega 3 market analysis by application (supplements & functional foods, pharmaceuticals, infant formula, pet & animal feed) and segment forecasts to 2022. 2016. http://www.grandviewresearch.com/industry-analysis/omega-3-market
  3. 3.
    Pike IH, Jackson A. Fish oil: production and use now and in the future. Lipid Technol. 2010;22:59–61.CrossRefGoogle Scholar
  4. 4.
    Statistics Norway. Fisheries. 2015. www.ssb.no/fiskeri
  5. 5.
    Carvajal AK, Mozuraityte R, Standal IB, Storrø I, Aursand M. Antioxidants in fish oil production for improved quality. J Am Oil Chem Soc. 2014;91:1611–21.CrossRefGoogle Scholar
  6. 6.
    Digre H, Skjøndal Bar E, Mathiassen JR, Standal D, Grimsmo L, Henriksen K, Romsdal R, Asche F. SINTEF report nr A26355 2014, Lønnsom foredling av sjømat i Norge. 2014. https://www.regjeringen.no/contentassets/00b7a7a3ebc141fdb9d62fbdf2ca9ea6/rapport_sintef_nou.pdf. Accessed 19 Sep 2016.
  7. 7.
    Breivik H, Stoknes I. Rubin Rapport no 216, Sildeavskjær som råstoff til spesialprodukter for helse og ernæring. 2012. http://www.rubin.no/images/files/documents/4649-216_sildeavskjr_til_spesialprodukter_for_helse_og_ernring.pdf. Accessed 19 Sep 2016.
  8. 8.
    Falch E, Aursand I, Digre H. SINTEF report. Pelagisk kvalitet Sesongvariasjoner i næringsverdi og fettsammensetning i NVG sild og makrell. 2006. http://www.sintef.no/publikasjoner/publikasjon/?pubid=SINTEF+A23944. Accesses 19 Sep 2016.
  9. 9.
    Kravolec JA, Zhang SC, Zhang W, Barrow CJ. A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem. 2012;131:639–44.CrossRefGoogle Scholar
  10. 10.
    Kravolec JA, Zhang WJ, Barrow CJ. Production of omega-3 triacylglycerol concentrates using a new food grade immobilized Candida antarctica lipase B. Aust J Chem. 2010;63:922–8.CrossRefGoogle Scholar
  11. 11.
    Munio MD, Esteban L, Robles A, Gonzales PA, Molina E. Synthesis of structured lipids by two enzymatic steps: ethanolysis of fish oils and esterification of 2-monoacylglycerols. Process Biochem. 2009;44:723–30.CrossRefGoogle Scholar
  12. 12.
    Bispo P, Batista I, Bernardino RJ, Bandarra NM. Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio. Appl Biochem Biotechnol. 2014;172:1866–81.CrossRefGoogle Scholar
  13. 13.
    Lanser AC, Manthey LK, Hou CT. Regioselectivity of new bacterial lipases determined by hydrolysis of triolein. Current Microbiol. 2002;44:336–40.CrossRefGoogle Scholar
  14. 14.
    Tanaka Y, Funada T, Hirano J, Hashizume R. Triglyceride specificity of Candida cylindracea Lipase: effect of docosahexaenoic acid on resistance of triglyceride to lipase. J Am Oil Chem Soc. 1993;70:1031–4.CrossRefGoogle Scholar
  15. 15.
    Haraldsson GG, Kristinsson B, Sigurdardottir R, Gudmundsson GG, Breivik H. The preparation of concentrates of eicosapentaenoic acid and docosahexaenoic acid by lipase-catalyzed transesterification of fish oil with ethanol. J Am Oil Chem Soc. 1997;74:1419–24.CrossRefGoogle Scholar
  16. 16.
    Irimescu R, Iwasaki Y, Hou CT. Study of TAG ethanolysis to 2-MAG by immobilized Candida antarctica lipase and synthesis of symmetrically structured TAG. J Am Oil Chem Soc. 2002;79:879–83.CrossRefGoogle Scholar
  17. 17.
    Fernandez-Lorente G, Filice M, Lopez-Vela D, Pizarro C, Wilson L, Betancor L, Avila Y, Guisan JM. Cross-linking of lipases adsorbed on hydrophobic supports. Highly selective hydrolysis of fish oil catalyzed by RML. J Am Oil Chem Soc. 2011;88:801–7.CrossRefGoogle Scholar
  18. 18.
    Moreno-Perez S, Guisan JM, Fernandez-Lorente G. Selective ethanolysis of fish oil catalyzed by immobilized lipases. J Am Oil Chem Soc. 2014;91:63–9.CrossRefGoogle Scholar
  19. 19.
    Gunstone FD. C-13-NMR studies of mono-acylglycerols, di-acylglycerols and tri-acylglycerols leading to qualitative and semiquantitative information about mixtures of these glycerol esters. Chem Phys Lipids. 1991;58:219–24.CrossRefGoogle Scholar
  20. 20.
    Gunstone FD. High-resolution C-13 NMR – a technique for the study of lipid structure and composition. Prog Lipid Res. 1994;33:19–28.CrossRefGoogle Scholar
  21. 21.
    Aursand M, Standal IB, Axelson DE. High-resolution C-13 nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules. J Agric Food Chem. 2007;55:38–47.CrossRefGoogle Scholar
  22. 22.
    Aursand M, Jørgensen L, Grasdalen H. Positional distribution of w-3 fatty acids in marine lipid triacylglycerols by high-resolution 13C nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc. 1995;72:293–7.CrossRefGoogle Scholar
  23. 23.
    Standal IB, Axelson DE, Aursand M. Differentiation of fish oils according to species by 13C NMR regiospecific analyses of triacylglycerols. J Am Oil Chem Soc. 2009;86:401–7.CrossRefGoogle Scholar
  24. 24.
    Haraldsson GG, Halldorsson A, Kulas E. Chemoenzymatic synthesis of structured triacylglycerols containing eicosapentaenoic and docosahexaenoic acids. J Am Oil Chem Soc. 2001;77:1139–45.CrossRefGoogle Scholar
  25. 25.
    Suarez ER, Mugford PF, Rolle AJ, Burton IW, Walter JA, Kralovec JA. C-13-NMR regioisomeric analysis of EPA and DHA in fish oil derived triacylglycerol concentrates. J Am Oil Chem Soc. 2010;87:1425–33.CrossRefGoogle Scholar
  26. 26.
    Akanbi TO, Adcock JL, Barrow CJ. Selective concentration of EPA and DHA using Thermomyces lanuginosus lipase is due to fatty acid selectivity and not regioselectivity. Food Chem. 2013;138:615–20.CrossRefGoogle Scholar
  27. 27.
    Haraldsson GG, Gudmundsson BO, Almarsson O. The synthesis of homogeneous triglycerides of eicosapentaenoic acid and docosahexaenoic acid by lipase. Tetrahedron. 1995;51:941–52.CrossRefGoogle Scholar
  28. 28.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. NMR chemical shift of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.CrossRefGoogle Scholar
  29. 29.
    Aursand M, Rainuzzo JR, Gradalen H. Quantitative high resolution 13C and 1H nuclear magnetic resonance of n-3 fatty acids from white muscle of Atlantic salmon (Salmo salar). J Am Oil Chem Soc. 1993;70:971–81.CrossRefGoogle Scholar
  30. 30.
    Kristinova V, Revilija M, Aaneby J, Storrø I, Rustad T. Iron-mediated peroxidation in marine emulsions and liposomes studied by dissolved oxygen consumption. Eur J Lipid Sci Technol. 2014;116:207–25.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Inger B. Standal
    • 1
  • Ana K. Carvajal
    • 2
  • Revilija Mozuraityte
    • 4
  • Ivar Storrø
    • 2
  • Trond Størseth
    • 2
  • Elham Abbasi
    • 3
  • Marit Aursand
    • 5
  1. 1.Department of Processing TechnologySINTEF OceanTrondheimNorway
  2. 2.SINTEF OceanTrondheimNorway
  3. 3.Department of BiotechnologyNorwegian University of Natural Science and TechnologyTrondheimNorway
  4. 4.Processing technologySINTEF Fisheries and AquacultureTrondheimNorway
  5. 5.Department of biotechnology and food scienceSINTEF Ocean Processing technology groupTrondheimNorway

Personalised recommendations