Skip to main content

NMR Imaging of Bakery Products

  • Reference work entry
  • First Online:
Modern Magnetic Resonance
  • 285 Accesses

Abstract

This chapter starts with the interest of imaging the heterogeneous structure of bakery products at multi-scales as well as the way some drawbacks of MRI applied to these particular products (especially low signal-to-noise ratio) have been circumvented with success in earlier MRI studies. Lying on numerous examples from the literature, the chapter then presents different types of original information which can be extracted from MRI images of bakery products: (i) the mapping of proportions (gas, ice, liquid water, or liquid fat) or of temperature, (ii) extraction from images of probability distribution function in size of gas cells, and (iii) displacement of matter. Since these changes are often combined, the analysis highlights the ways or the configurations favorable for unravelling the different contributions to the variation in the MRI signal and more generally the precautions to be taken for adequate interpretation of the MRI signal in the different configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Datta AK, Sahin S, Sumnu G, Keskin SO. Porous media characterisation of breads baked using novel heating modes. J Food Eng. 2007;79:106–16.

    Article  Google Scholar 

  2. Lucas T, Quellec S, Le Bail A, Davenel A. Chilling and freezing of part-baked bread. Part II: experimental assessment of water phase changes and structure collapse. J Food Eng. 2005;70(2):151–64.

    Article  Google Scholar 

  3. Lucas T, Grenier A, Quellec S, Le Bail A, Davenel A. MRI quantification of ice gradients in dough during freezing or thawing processes. J Food Eng. 2005;71(1):98–108.

    Article  Google Scholar 

  4. Wagner MJ, Loubat M, Sommier A, Le Ray D, Collewet G, Broyart B, et al. MRI study of bread baking: experimental device and MRI signal analysis. Int J Food Sci Technol. 2008;43(6):1129–39.

    Article  CAS  Google Scholar 

  5. Wagner M, Quellec S, Trystrarn G, Lucas T. MRI evaluation of local expansion in bread crumb during baking. J Cereal Sci. 2008;48(1):213–23.

    Article  Google Scholar 

  6. Lucas T, Musse M, Bornert M, Davenel A, Quellec S. Temperature mapping in bread dough using SE and GE two-point MRI methods: experimental and theoretical estimation of uncertainty. Magn Reson Imaging. 2012;20(3):431–45.

    Article  Google Scholar 

  7. Lucas T, Le Ray D, Davenel A. Chilling and freezing of part-baked bread. Part I: an MRI signal analysis. J Food Eng. 2005;70(2):139–49.

    Article  Google Scholar 

  8. Bajd F, Sersa I. Continuous monitoring of dough fermentation and bread baking by magnetic resonance microscopy. Magn Reson Imaging. 2011;29:434–42.

    Article  Google Scholar 

  9. Wagner MJ, Lucas T, Le Ray D, Trystram G. Water transport in bread during baking. J Food Eng. 2007;78(4):1167–73.

    Article  Google Scholar 

  10. Wagner MJ. Bread baking. Local and dynamical monitoring by MRI and mathematical modelling for better process understanding (in French). PHd Thesis, ENSIA, Massy (France), 2005.

    Google Scholar 

  11. Bussiere G, Grebaut J, de la Gueriviere JF. Migrations d’eau dans un pain biscottier en cours de cuisson et du ressuage; conséquences pratiques. Centre Technique des Unions. 1972;250:167–77.

    Google Scholar 

  12. Lodi A, Vodovotz Y. Use of MRI to probe the water proton mobility in soy and wheat breads. In: Farhat IA, Belton PS, Webb GA, editors. Magnetic resonance in food science: from molecules to man. Cambridge: Royal Society of Chemistry Special Publications. 2007;83–8.

    Google Scholar 

  13. Deligny C, Collewet G, Lucas T. Quantitative MRI study of layers and bubbles in Danish paste during the proving process. J Food Eng. 2017;203:6–15.

    Article  Google Scholar 

  14. Lucas T, Grenier D, Bornert M, Challois S, Quellec S. Bubble growth and collapse in pre-fermented doughs during freezing, thawing and final proving. Food Res Int. 2010;43(4):1041–8.

    Article  Google Scholar 

  15. Van Duynhoven JPM, Van Kempen GMP, Van Sluis R, Rieger B, Weegels P, Van Vliet LJ, et al. Quantitative assessment of gas cell development during the proofing of dough by magnetic resonance imaging and image analysis. Cereal Chem. 2003;80(4):390–5.

    Article  Google Scholar 

  16. Rondeau-Mouro C, Cambert M, Kovrlija R, Musse M, Lucas T, Mariette F. Temperature-associated proton dynamics in wheat starch-based model systems and wheat flour dough evaluated by NMR. Food Bioprocess Technol. 2015;8(4):777–90.

    Article  CAS  Google Scholar 

  17. Bonny JM, Rouille J, Della Valle G, Devaux MF, Douliez JP, Renou JP. Dynamic magnetic resonance microscopy of flour dough fermentation. Magn Reson Imaging. 2004;22(3):395–401.

    Article  Google Scholar 

  18. Collewet G, Perrouin V, Deligny C, Idier J, Lucas T. Estimating fat, paste and gas in a proving Danish paste by MRI – description of the method and evaluation of its performances (bias and accuracy, sensitivity threshold). 2016. https://hal.archives-ouvertes.fr/hal-00835832.

  19. Grenier A, Lucas T, Collewet G, Le Bail A. Assessment by MRI of local porosity in dough during proving. Theoretical considerations and experimental validation using a spin-echo sequence. Magn Reson Imaging. 2003;21(9):1071–86.

    Article  CAS  Google Scholar 

  20. Grenier A, Lucas T, Davenel A, Collewet G, Le Bail A. Comparison of two sequences: spin-echo and gradient-echo, for the assessment of dough porosity during proving. In: Belton PS, Gil AM, Webb GA, Rutledge DN, editors. Magnetic resonnace in food science lastest developments. Cambridge: The Royal Society of Chemistry; 2003. p. 136–43.

    Google Scholar 

  21. De Guio F, Musse M, Benoit-Cattin H, Lucas T, Davenel A. Magnetic resonance imaging method based on magnetic susceptibility effects to estimate bubble size in alveolar products: application to bread dough during proving. Magn Reson Imaging. 2009;27(4):577–85.

    Article  Google Scholar 

  22. Hong SW, Yan ZY, Otterburn MS, McCarthy MJ. Magnetic resonance imaging (MRI) of a cookie in comparison with time-lapse photographic analysis (TLPA) during baking process. Magn Reson Imaging. 1996;14(7–8):923–7.

    Article  CAS  Google Scholar 

  23. Heil JR, Ozilgen M, Mc Carthy MJ (Eds). MRI analysis of water migration and void formation in baking biscuits, AIChE symposium series. Washington, DC: American Chemical Society; 1993.

    Google Scholar 

  24. Goetz J, Gross D, Koehler P. On-line observation of dough fermentation by magnetic resonance imaging and volumetric measurements. Eur Food Res Technol. 2003;217(6):504–11.

    Article  CAS  Google Scholar 

  25. Grenier A. MRI monitoring and modelling of heat transport in alveolar products; application to freezing, thawing and proving of bread dough (in French). University of Nantes, France; 2003.

    Google Scholar 

  26. Calligaris S, Manzocco L, Valoppi F, Nicoli MC. Effect of palm oil replacement with monoglyceride organogel and hydrogel on sweet bread properties. Food Res Int. 2013;51(2):596–602.

    Article  CAS  Google Scholar 

  27. Naito S, Fukami S, Mizokami Y, Hirose R, Kawashima K, Takano H, et al. The effect of gelatinized starch on baking bread. Food Sci Technol Res. 2005;11(2):194–201.

    Article  CAS  Google Scholar 

  28. Naito S, Ishida N, Takano H, Koizumi M, Kano H. Routine evaluation of the grain structures of baked breads by MRI. Food Sci Technol Res. 2003;9(2):155–61.

    Article  Google Scholar 

  29. Soille P. Morphological image analysis: principles and applications. Berlin: Springer-Verlag New York, Inc.; 2003. p. 391.

    Google Scholar 

  30. Rouille J, Bonny JM, Della Valle G, Devaux AF, Renou JP. Effect of flour minor components on bubble growth in bread dough during proofing assessed by magnetic resonance imaging. J Agric Food Chem. 2005;53(10):3986–94.

    Article  CAS  Google Scholar 

  31. Irani M, Anandan P. About direct methods. ICCV ’99 Proceedings of the international workshop on vision algorithms: theory and practice. 685642, Springer-Verlag; 2000. p. 267–77.

    Chapter  Google Scholar 

  32. Torr PHS, Zisserman A. Feature based methods for structure and motion estimation. ICCV ’99 Proceedings of the international workshop on vision algorithms: theory and practice. 685642, Springer-Verlag; 2000. p. 278–94.

    Chapter  Google Scholar 

  33. Pojic M, Musse M, Rondeau C, Hadnadev M, Grenier D, Mariette F, et al. Overall and local bread expansion, mechanical properties, and molecular structure during bread baking: effect of emulsifying starches. Food Bioprocess Technol. 2016;9(8):1287–305.

    Article  CAS  Google Scholar 

  34. Zhang L, Lucas T, Doursat C, Flick D, Wagner M. Effects of crust constraints on bread expansion and CO2 release. J Food Eng. 2007;80(4):1302–11.

    Article  Google Scholar 

  35. Nicolas V, Vanin F, Doursat C, Grenier D, Lucas T, Flick D. Modelling bread baking with focus on overall deformation and local porosity evolution. AiCHE J. 2016. https://doi.org/10.1002/aic.15301.

    Article  Google Scholar 

  36. Lucas T, Doursat C, Grenier D, Wagner M, Trystram G, Flick D. Modeling of bread baking with a new, multi-scale formulation of evaporation-condensation-diffusion and evidence of compression in the outskirts of the crumb. J Food Eng. 2015;149:24–37.

    Article  Google Scholar 

  37. Vanin FM, Lucas T, Trystram G. Crust formation and its role during bread baking. Trends Food Sci Technol. 2010;20(8):333–43.

    Article  CAS  Google Scholar 

  38. Corpetti T, Memin E, Perez P. Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell. 2002;24(3):365–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Collewet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Collewet, G., Lucas, T. (2018). NMR Imaging of Bakery Products. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_78

Download citation

Publish with us

Policies and ethics