Advertisement

Modeling NMR Chemical Shift Tensors

  • Sean T. Holmes
  • Robbie J. Iuliucci
Reference work entry

Abstract

This chapter discusses aspects of modeling NMR chemical shift tensors with electronic structure methods. The uncanny ability of the chemical shift to characterize electronic structure promotes its use in a wide range of fields. Interpreting the link between the structure and the chemical shift tensor hinges on electronic methods to interpret the magnetic shielding phenomenon. By highlighting the modeling steps and key aspects, the discussion gives a general overview of the growing discipline. The chapter focuses on calculations using density functional theory, which is the most widely employed approach for molecules of significant size. Particular attention is given to modeling solid phase structures, with an emphasis on the role of geometry optimizations and computational protocols employed to model lattice structure. Applications are discussed, including the resolution of ambiguous structural features in the field of NMR crystallography, assignments of resonance lines and bands to particular sites within a material, and theoretical insights that can be obtained by benchmark studies of magnetic shielding.

Keywords

Chemical shift tensor Magnetic shielding tensor Nuclear magnetic resonance Solid-state NMR NMR crystallography Crystal structure Density functional theory Gauge-including atomic orbitals Gauge-including projector augmented wave Geometry optimization Cluster models Plane wave 

References

  1. 1.
    Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A. 2007;104(23):9615–20.CrossRefGoogle Scholar
  2. 2.
    Facelli JC, Grant DM. Determination of molecular symmetry in crystalline naphthalene using solid-state NMR. Nature. 1993;365(6444):325–7.CrossRefGoogle Scholar
  3. 3.
    Bhate MP, McDermott AE. Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Proc Natl Acad Sci U S A. 2012;109(38):15265–70.CrossRefGoogle Scholar
  4. 4.
    Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM. Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci U S A. 2011;108(41):16974–9.CrossRefGoogle Scholar
  5. 5.
    Hou G, Paramasivam S, Yan S, Polenova T, Vega AJ. Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids. J Am Chem Soc. 2013;135(4):1358–68.CrossRefGoogle Scholar
  6. 6.
    Hamaed H, Pawlowski JM, Cooper BFT, Fu R, Eichhorn SH, Schurko RW. Application of solid-state 35Cl NMR to the structural characterization of hydrochloride pharmaceuticals and their polymorphs. J Am Chem Soc. 2008;130(33):11056–65.CrossRefGoogle Scholar
  7. 7.
    Mitchell MR, Carnevale D, Orr R, Whittle KR, Ashbrook SE. Exploiting the chemical shielding anisotropy to probe structure and disorder in ceramics: 89Y MAS NMR and first-principles calculations. J Phys Chem C. 2012;116(6):4273–86.CrossRefGoogle Scholar
  8. 8.
    Catalano J, Murphy A, Yao Y, Yap GPA, Zumbulyadis N, Centeno SA, et al. Coordination geometry of lead carboxylates – spectroscopic and crystallographic evidence. J Chem Soc Dalton Trans. 2015;44(5):2340–7.CrossRefGoogle Scholar
  9. 9.
    Jameson CJ. Understanding NMR chemical shifts. Annu Rev Phys Chem. 1996;47(1):135–69.CrossRefGoogle Scholar
  10. 10.
    Ramsey NF. The internal diamagnetic field correction in measurements of the proton magnetic moment. Phys Rev. 1950;77(4):567.CrossRefGoogle Scholar
  11. 11.
    Ramsey NF. Magnetic shielding of nuclei in molecules. Phys Rev. 1950;78(6):699–703.CrossRefGoogle Scholar
  12. 12.
    Lamb WE. Internal diamagnetic fields. Phys Rev. 1941;60(11):817–9.CrossRefGoogle Scholar
  13. 13.
    Stevens RM, Lipscomb WN, Pitzer RM. Perturbed Hartree-Fock calculations. 1. Magnetic susceptibility and shielding in the LiH molecule. J Chem Phys. 1963;38(2):550.CrossRefGoogle Scholar
  14. 14.
    Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol Phys. 1974;27(4):789–807.CrossRefGoogle Scholar
  15. 15.
    Pulay P, Hinton JF, Wolinski K. Efficient implementation of the GIAO method for magnetic properties: theory and application. In: Tossell JA, editor. Nuclear magnetic shieldings and molecular structure. Dordrecht: Springer Netherlands; 1993. p. 243–62. CrossRefGoogle Scholar
  16. 16.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys. 1996;104(14):5497–509.CrossRefGoogle Scholar
  17. 17.
    Schreckenbach G, Ziegler T. Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem. 1995;99(2):606–11.CrossRefGoogle Scholar
  18. 18.
    Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B. 2001;63(24):245101.CrossRefGoogle Scholar
  19. 19.
    Facelli JC. Modeling NMR chemical shifts. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2008. p. 53–62.Google Scholar
  20. 20.
    Kaupp M, Buehl M, Malkin VG (Eds). Calculation of NMR AND EPR parameters: theory and applications. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; 2004 .603 pp.Google Scholar
  21. 21.
    Hameka HF. Theory of magnetic properties of molecules with particular emphasis on the hydrogen molecule. Rev Mod Phys. 1962;34(1):87–101.CrossRefGoogle Scholar
  22. 22.
    Epstein ST. Gauge invariance of the Hartree-Fock approximation. J Chem Phys. 1965;42(8):2897–8.CrossRefGoogle Scholar
  23. 23.
    Webb GA. Shielding: overview of theoretical methods. In: David MG, Robin KH, editors. Encyclopedia of nuclear magnetic resonance. London: John Wiley and Sons; 1996. p. 4307–18.Google Scholar
  24. 24.
    Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc. 1990;112(23):8251–60.CrossRefGoogle Scholar
  25. 25.
    Gauss J, Stanton JF, editors. Electron-correlated methods for the calculation of NMR chemical shifts. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2004.Google Scholar
  26. 26.
    Jameson CJ. Chemical shift scales on an absolute basis. In: Harris RK, Wasylishen R, editors. Encyclopedia of magnetic resonance. Chichester: John Wiley; 2011.Google Scholar
  27. 27.
    Keal TW, Tozer DJ. The exchange-correlation potential in Kohn-Sham nuclear magnetic resonance shielding calculations. J Chem Phys. 2003;119(6):3015–24.CrossRefGoogle Scholar
  28. 28.
    Keal TW, Tozer DJ. A semiempirical generalized gradient approximation exchange-correlation functional. J Chem Phys. 2004;121(12):5654–60.CrossRefGoogle Scholar
  29. 29.
    Keal TW, Tozer DJ, Helgaker T. GIAO shielding constants and indirect spin-spin coupling constants: performance of density functional methods. Chem Phys Lett. 2004;391(4–6):374–9.CrossRefGoogle Scholar
  30. 30.
    Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Magn Reson Chem. 2002;40:489–505.CrossRefGoogle Scholar
  31. 31.
    Grant DM, Halling MD. Metric spaces in NMR crystallography. In: Harris RK, Wasylishen R, editors. Encyclopedia of magnetic resonance. Chichester: John Wiley; 2007.Google Scholar
  32. 32.
    Sherwood MH. Chemical shift tensors in single crystals. 2007;0(3):1–8.Google Scholar
  33. 33.
    Eichele K, Wasylishen RE. 31P NMR study of powder and single-crystal samples of ammonium dihydrogen phosphate: effect of homonuclear dipolar coupling. J Phys Chem. 1994;98(12):3108–13.CrossRefGoogle Scholar
  34. 34.
    Sherwood MH, Alderman DW, Grant DM. Two-dimensional chemical-shift tensor correlation spectroscopy. Multiple-axis sample-reorientation mechanism. J Magn Reson. 1989;84(3):466–89.Google Scholar
  35. 35.
    Iuliucci RJ, Facelli JC, Alderman DW, Grant DM. Carbon-13 chemical shift tensors in polycyclic aromatic compounds. 5. Single-crystal study of acenaphthene. J Am Chem Soc. 1995;117(8):2336–43.CrossRefGoogle Scholar
  36. 36.
    Zilm KW, Conlin RT, Grant DM, Michl J. Low-temperature carbon-13 magnetic resonance of solids. 1. Alkenes and cycloalkenes. J Am Chem Soc. 1980;102(22):6672–6.CrossRefGoogle Scholar
  37. 37.
    Maricq MM, Waugh JS. NMR in rotating solids. J Chem Phys. 1979;70(7):3300–16.CrossRefGoogle Scholar
  38. 38.
    Herzfeld J, Chen X. Sideband analysis in magic angle spinning NMR of solids. In: Harris RK, Wasylishen R, editors. Encyclopedia of magnetic resonance. Chichester: John Wiley; 2007.Google Scholar
  39. 39.
    De Groot HJM, Smith SO, Kolbert AC, Courtin JML, Winkel C, Lugtenburg J, et al. Iterative fitting of magic-angle-spinning NMR spectra. J Magn Reson. 1991;91(1):30–8.Google Scholar
  40. 40.
    Harper JK, Iuliucci RJ. C-13 chemical-shift tensors in organic materials. In: Encyclopedia of analytical chemistry. John Wiley & Sons; 2014. p. 1–37.Google Scholar
  41. 41.
    Kalakewich K, Iuliucci RJ, Mueller KT, Eloranta H, Harper JK. Monitoring the refinement of crystal structures with 15N solid-state NMR shift tensor data. J Chem Phys. 2015;143(19):194702.CrossRefGoogle Scholar
  42. 42.
    Harris RK, Olivieri AC. Spinning sideband analysis for spin-1/2 nuclei. ChemInform. 2003;34(32):1–10.CrossRefGoogle Scholar
  43. 43.
    Sefzik TH, Fidler JM, Iuliucci RJ, Facelli JC. Modeling the 13C chemical-shift tensor in organic single crystals by quantum mechanical methods: finite basis set effects. Magn Reson Chem. 2006;44(3):390–400.CrossRefGoogle Scholar
  44. 44.
    Johnston JC, Iuliucci RJ, Facelli JC, Fitzgerald G, Mueller KT. Intermolecular shielding contributions studied by modeling the 13C chemical-shift tensors of organic single crystals with plane waves. J Chem Phys. 2009;131(14):144503.CrossRefGoogle Scholar
  45. 45.
    Hartman JD, Kudla RA, Day GM, Mueller LJ, Beran GJO. Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals. Phys Chem Chem Phys. 2016;18(31):21686–709.CrossRefGoogle Scholar
  46. 46.
    Jensen F. Segmented contracted basis sets optimized for nuclear magnetic shielding. J Chem Theory Comput. 2015;11(1):132–8.CrossRefGoogle Scholar
  47. 47.
    Grant DM, Liu F, Iuliucci RJ, Phung CG, Facelli JC, Alderman DW. Relationship of 13C NMR chemical shift tensors to diffraction structures. Acta Crystallogr B. 1995;B51(4):540–6.CrossRefGoogle Scholar
  48. 48.
    Liu F, Phung CG, Alderman DW, Grant DM. Carbon-13 chemical shift tensors in methyl glycosides, comparing diffraction and optimized structures with single-crystal NMR. J Am Chem Soc. 1996;118(43):10629–34.CrossRefGoogle Scholar
  49. 49.
    Pawlak T, Potrzebowski MJ. Fine refinement of solid-state molecular structures of leu- and met-enkephalins by NMR crystallography. J Phys Chem B. 2014;118(12):3298–309.CrossRefGoogle Scholar
  50. 50.
    Harper JK, Iuliucci R, Gruber M, Kalakewich K. Refining crystal structures with experimental 13C NMR shift tensors and lattice-including electronic structure methods. CrystEngComm. 2013;15(43):8693–704.CrossRefGoogle Scholar
  51. 51.
    Helgaker T, Jaszuński M. Density-functional and coupled-cluster singles-and-doubles calculations of the nuclear shielding and indirect nuclear spin − spin coupling constants of o-benzyne. J Chem Theory Comput. 2007;3(1):86–94.CrossRefGoogle Scholar
  52. 52.
    Cohen AJ, Mori-Sanchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012;112(1):289–320.CrossRefGoogle Scholar
  53. 53.
    van de Streek J, Neumann MA. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallogr B. 2010;66(Pt 5):544–58.CrossRefGoogle Scholar
  54. 54.
    Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Semi-empirical refinements of crystal structures using 17O quadrupolar-coupling tensors. J Chem Phys. 2017;146:064201.CrossRefGoogle Scholar
  55. 55.
    Pfrommer BG, Côté M, Louie SG, Cohen ML. Relaxation of crystals with the quasi-Newton method. J Comput Phys. 1997;131(1):233–40.CrossRefGoogle Scholar
  56. 56.
    Beran GJO. Modeling polymorphic molecular crystals with electronic structure theory. Chem Rev. 2016. acs.chemrev.5b00648-acs.chemrev.5b.Google Scholar
  57. 57.
    Smith JR, Xu W, Raftery D. Analysis of conformational polymorphism in pharmaceutical solids using solid-state NMR and electronic structure calculations. J Phys Chem B. 2006;110(15):7766–76.CrossRefGoogle Scholar
  58. 58.
    Orendt AM, Facelli JC. Solid-state effects on NMR chemical shifts. In: Webb GA, editor. Annual reports on NMR spectroscopy. Academic Press; 2007. p. 115–78.Google Scholar
  59. 59.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc. 1996;118(26):6317–8.CrossRefGoogle Scholar
  60. 60.
    Facelli JC. Intermolecular shielding from molecular magnetic susceptibility. A new view of intermolecular ring current effects. Magn Reson Chem. 2006;44(3 Special Issue):401–8.CrossRefGoogle Scholar
  61. 61.
    Forse AC, Griffin JM, Presser V, Gogotsi Y, Grey CP. Ring current effects: factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J Phys Chem C. 2014;118:7508–14.CrossRefGoogle Scholar
  62. 62.
    Ma Z, Halling MD, Solum MS, Harper JK, Orendt AM, Facelli JC, et al. Ring current effects in crystals. Evidence from13C chemical shift tensors for intermodular shielding in 4,7-Di-t-butylacenaphthene versus 4,7-Di-t-butylacenaphthylene. J Phys Chem A. 2007;111(10):2020–7.CrossRefGoogle Scholar
  63. 63.
    Marsh ZM, Srnec MN, Iuliucci RJ, Madura JD. Intermolecular effects and their influence on the C-13 chemical shift anisotropy in organic crystal lattices. In: Abstracts of papers of the American Chemical Society, 2014 Mar 16 (Vol. 247). Washington, DC: Amer Chemical Society.Google Scholar
  64. 64.
    Strohmeier M, Stueber D, Grant DM. Accurate 13C and 15N chemical shift and 14N quadrupolar coupling constant calculations in amino acid crystals: zwitterionic, hydrogen-bonded systems. J Phys Chem A. 2003;107(38):7629–42.CrossRefGoogle Scholar
  65. 65.
    Hu JZ, Facelli JC, Alderman DW, Pugmire RJ, Grant DM. 15N chemical shift tensors in nucleic acid bases. J Am Chem Soc. 1998;120(38):9863–9.CrossRefGoogle Scholar
  66. 66.
    Stueber D, Guenneau FN, Grant DM. The calculation of 13C chemical shielding tensors in ionic compounds utilizing point charge arrays obtained from Ewald lattice sums. J Chem Phys. 2001;114(21):9236–43.CrossRefGoogle Scholar
  67. 67.
    de Dios AC, Oldfield E. Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches. Chem Phys Lett. 1993;205(1):108–16.CrossRefGoogle Scholar
  68. 68.
    Zheng G, Wang L, Hu J, Zhang X, Shen L, Ye C, et al. Hydrogen bonding effects on the 13C NMR chemical shift tensors of some amino acids in the solid state. Magn Reson Chem. 1997;35(9):606–8.CrossRefGoogle Scholar
  69. 69.
    Stueber D, Grant DM. 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2′-deoxythymidine, and cytidine. J Am Chem Soc. 2002;124(35):10539–51.CrossRefGoogle Scholar
  70. 70.
    Ferraro MB, Repetto V, Facelli JC. Modeling NMR chemical shifts: a comparison of charge models for solid state effects on 15N chemical shift tensors. Solid State Nucl Magn Reson. 1998;10(4):185–9.CrossRefGoogle Scholar
  71. 71.
    Weber J, Schmedt auf der Gunne J. Calculation of NMR parameters in ionic solids by an improved self-consistent embedded cluster method. Phys Chem Chem Phys. 2010;12(3):583–603.CrossRefGoogle Scholar
  72. 72.
    Hartman JD, Monaco S, Schatschneider B, Beran GJO. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: an alternative to planewave methods. J Chem Phys. 2015;143(10):102809.CrossRefGoogle Scholar
  73. 73.
    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist’s point of view. Chem Rev. 2012;112(11):5733–79.CrossRefGoogle Scholar
  74. 74.
    Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Critical analysis of cluster models and exchange-correlation functionals for calculating magnetic shielding in molecular solids. J Chem Theory Comput. 2015;11(11):5229–41.CrossRefGoogle Scholar
  75. 75.
    Holmes ST, Alkan F, Iuliucci RJ, Mueller KT, Dybowski C. Analysis of the bond-valence method for calculating 29Si and 31P magnetic shielding in covalent network solids. J Comput Chem. 2016;37(18):1704–10.CrossRefGoogle Scholar
  76. 76.
    Holmes ST, Bai S, Iuliucci RJ, Mueller KT, Dybowski C. Calculations of solid-state 43Ca NMR parameters: a comparison of periodic and cluster approaches and an evaluation of DFT functionals. J Comput Chem. In press 2017.Google Scholar
  77. 77.
    Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Density functional investigation of intermolecular effects on 13C NMR chemical-shielding tensors modeled with molecular clusters. J Chem Phys. 2014;141(16):164121.CrossRefGoogle Scholar
  78. 78.
    Alkan F, Dybowski C. Chemical-shift tensors of heavy nuclei in network solids: a DFT/ZORA investigation of 207Pb chemical-shift tensors using the bond-valence method. Phys Chem Chem Phys. 2015;17:25014–26.CrossRefGoogle Scholar
  79. 79.
    Brown ID. Recent developments in the methods and applications of the bond valence model. Chem Rev. 2009;109(12):6858–919.CrossRefGoogle Scholar
  80. 80.
    Vaara J, Lounila J, Ruud K, Helgaker T. Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: a new 17O absolute shielding scale. J Chem Phys. 1998;109(19):8388–97.CrossRefGoogle Scholar
  81. 81.
    Monserrat B, Needs RJ, Pickard CJ. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple. J Chem Phys. 2014;141(13):1–14.CrossRefGoogle Scholar
  82. 82.
    Powell J, Kalakewich K, Uribe-Romo FJ, Harper JK. Solid-state NMR and DFT predictions of differences in COOH hydrogen bonding in odd and even numbered n-alkyl fatty acids. Phys Chem Chem Phys. 2016;18(18):12541–9.CrossRefGoogle Scholar
  83. 83.
    Bond AD. On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J Chem. 2004;28(1):104–14.CrossRefGoogle Scholar
  84. 84.
    Holmes ST, Dybowski C. Carbon-13 chemical-shift tensors in indigo: a two-dimensional NMR-ROCSA and DFT study. Solid State Nucl Magn Reson. 2015;72:90–5.CrossRefGoogle Scholar
  85. 85.
    Catalano J, Murphy A, Yao Y, Alkan F, Zurnbulyadis N, Centeno SA, et al. 207Pb and 119Sn solid-state NMR and relativistic density functional theory studies of the historic pigment lead-tin yellow type I and its reactivity in oil paintings. J Phys Chem A. 2014;118(36):7952–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of DelawareNewarkUSA
  2. 2.Department of ChemistryWashington and Jefferson CollegeWashingtonUSA

Personalised recommendations