Advertisement

Mobile and Compact NMR

Reference work entry

Abstract

NMR with mobile and compact devices is experiencing considerable growth in recent years in particular since instruments have become available, which are capable not only of measuring NMR relaxation but also images and high-resolution spectra. Based on permanent magnet technology, compact tabletop NMR instruments measure samples of materials and solutions positioned inside the magnet, while compact mobile instruments measure material properties of intact objects and samples nondestructively in the inhomogeneous stray field outside the magnet. Following a brief introduction to NMR with homogeneous and inhomogeneous magnetic fields and to the concepts of permanent center- and stray-field NMR magnets, the evolution of the technology over the past 10 years is reviewed and illustrated with selected applications. Relaxation and diffusion measurements find use in the analysis of foods, biological tissues, polymer materials, porous media, and objects of cultural heritage. Compact imaging instruments are mainly employed to study crops and plants as well as transport phenomena in chemical engineering and geophysics. Tabletop NMR spectrometers find increasing use in educational institutions and for chemical analysis and reaction monitoring on the workbench and in the fume hood of the synthesis laboratory, and they are being explored as a tool for process control.

Keywords

Mobile NMR Compact NMR Spectroscopy Relaxometry Diffusometry Laplace NMR Magnetic resonance imaging Reaction monitoring Depth profiling Distribution of relaxation times Stray-field NMR NMR-MOUSE Permanent magnets Food Biological tissue Polymers Porous media Cultural heritage Miniaturization Well logging 

References

  1. 1.
    Blümich B, Haber-Pohlmeier S, Zia W. Compact NMR. Berlin: de Gruyter; 2014.CrossRefGoogle Scholar
  2. 2.
    Johns M, Fridjonson EO, Vogt S, Haber A. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015.CrossRefGoogle Scholar
  3. 3.
    Blümich B, Pretsch E. Compact NMR, Trends in analytical chemistry: Part A. Amsterdam: Elsevier; 2016.Google Scholar
  4. 4.
    Danieli E, Blümich B, Casanova F. Mobile nuclear magnetic resonance. In: Harris RK, Wasylishen RE, editors. eMagRes. Chichester: Wiley; 2012.Google Scholar
  5. 5.
    Danieli E, Blümich B, Casanova F. Mobile NMR. In: Simpson MJ, Simpson AJ, editors. NMR spectroscopy: a versatile tool for environmental research. New York: Wiley; 2014. p. 149–65.Google Scholar
  6. 6.
    Blümich B. Miniature and tabletop nuclear magnetic resonance spectrometers. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2016.  https://doi.org/10.1002/9780470027318.a9458.CrossRefGoogle Scholar
  7. 7.
    van Putte K, van den Enden J. Fully automated determination of solid fat content by pulsed NMR. J Am Oil Chem Soc. 1974;51:316–20.CrossRefGoogle Scholar
  8. 8.
    Barker PJ, Stronks HJ. Application of the low resolution pulsed NMR “Minispec” to analytical problems in the food and agriculture industries. In: Finley JW, Schmidt SJ, Serianni AS, editors. NMR applications in biopolymers. Boston: Springer; 1990.Google Scholar
  9. 9.
    Jackson JA, Burnett LJ, Harmon F. Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field. J Magn Reson. 1980;41:411–21.Google Scholar
  10. 10.
    Coates GR, Xiao L, Prammer MG. NMR logging principles and applications. Houston: Halliburton Energy Service; 1999.Google Scholar
  11. 11.
    Hürlimann M, Heaton NJ. NMR well logging. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 11–85.CrossRefGoogle Scholar
  12. 12.
    Matzkanin GA. A review of nondestructive testing of composites using NMR. In: Höller P, Dobmann G, Ruud CO, Green RE, editors. Nondestructive characterization of materials. Berlin: Springer; 1989. p. 655–69.CrossRefGoogle Scholar
  13. 13.
    Blümich B, Perlo J, Casanova F. Mobile single-sided NMR. Prog Nucl Magn Reson Spectrosc. 2008;52:197–269.CrossRefGoogle Scholar
  14. 14.
    Blümich B, Casanova F. Mobile NMR. In: Webb G, editor. Modern magnetic resonance. Berlin: Springer; 2008. p. 373–82.Google Scholar
  15. 15.
    Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and “NMR on a chip” for chemistry, biochemistry, and industry. Chem Rev. 2014;114:5641–94.CrossRefGoogle Scholar
  16. 16.
    Ha D, Sun N, Ham D. Next generation multidimensional NMR spectrometer based on semiconductor technology. eMagRes. 2015;4:117–26.  https://doi.org/10.1002/9780470034590.emrstm1421.CrossRefGoogle Scholar
  17. 17.
    Issadore D, Westervelt RM, editors. Point-of-care diagnostics on a Chip. Heidelberg: Springer; 2013.Google Scholar
  18. 18.
    Soltner H, Blümler P. Dipolar Halbach magnet stacks made from identically shaped permanent magnets for magnetic resonance. Concepts Magn Reson. 2010;36A:211–22.CrossRefGoogle Scholar
  19. 19.
    Blümler P, Casanova F. Hardware developments: Halbach magnet arrays. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 133–57.CrossRefGoogle Scholar
  20. 20.
    Demas V, Prado PJ. Compact magnets for magnetic resonance. Concepts Magn Reson. 2009;34A:48–59.CrossRefGoogle Scholar
  21. 21.
    Casanova F, Perlo J, Blümich B. Single-sided NMR. Berlin: Springer; 2011.CrossRefGoogle Scholar
  22. 22.
    Casanova F, Perlo J, Blümich B. Depth profiling by single-sided NMR. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 107–22.CrossRefGoogle Scholar
  23. 23.
    Blümler P, Casanova F. Hardware developments: single-sided magnets. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 110–32.CrossRefGoogle Scholar
  24. 24.
    Perlo J, Casanova F, Blümich B. Advances in single-sided NMR. In: Webb G, editor. Modern magnetic resonance. Berlin: Springer; 2008. p. 1523–7.Google Scholar
  25. 25.
    Mitchell J, Blümler P, McDonald PJ. Spatially resolved nuclear magnetic resonance studies of planar samples. Prog Nucl Magn Reson Spectrosc. 2006;48:161–81.CrossRefGoogle Scholar
  26. 26.
    Blümich B, Rehorn C, Zia W. Magnets for small-scale and portable NMR. In: Korvink J, Anders J, editors. Micro and nano scale NMR: technologies and systems. New York: Wiley; 2016. p. xxx–xxx.Google Scholar
  27. 27.
    Perlo J, Casanova F, Blümich B. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science. 2007;315:1110–2.CrossRefGoogle Scholar
  28. 28.
    Eidmann G, Savelsberg R, Blümler P, Blümich B. The NMR MOUSE: a mobile universal surface explorer. J Magn Reson A. 1996;122:104–9.CrossRefGoogle Scholar
  29. 29.
    Perlo J, Casanova F, Blümich B. Profiles with microscopic resolution by single-sided NMR. J Magn Reson. 2005;176:64–70.CrossRefGoogle Scholar
  30. 30.
    Van Landeghem M, Danieli E, Perlo J, Blümich B, Casanova F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J Magn Reson. 2012;215:74–84.CrossRefGoogle Scholar
  31. 31.
    McDowell A, Fukushima E. Ultracompact NMR: 1H spectroscopy in a subkilogram magnet. Appl Magn Reson. 2008;35:185–95.CrossRefGoogle Scholar
  32. 32.
    Danieli E, Perlo J, Blümich B, Casanova F. Small magnets for portable NMR spectrometers. Angew Chem Int Ed. 2010;49:4133–5.CrossRefGoogle Scholar
  33. 33.
    Halbach K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods. 1980;169:1–10.CrossRefGoogle Scholar
  34. 34.
    Blümich B. Introduction to compact NMR: a review of methods. TrAc Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2015.12.012.CrossRefGoogle Scholar
  35. 35.
    Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon; 1987.Google Scholar
  36. 36.
    Callaghan PT. Translational dynamics and magnetic resonance. Oxford: Oxford University Press; 2011.CrossRefGoogle Scholar
  37. 37.
    Haws EJ, Hill RR, Northrope DJ. The interpretation of proton magnetic resonance spectra. London: Heyden & Sons; 1973.Google Scholar
  38. 38.
    Blümich B, Casanova F, Perlo J, Presciutti F, Anselmi C, Doherty B. Noninvasive testing of art and cultural heritage by mobile NMR. Acc Chem Res. 2010;43:761–70.CrossRefGoogle Scholar
  39. 39.
    Capitani D, Di Tullio V, Proietti N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.CrossRefGoogle Scholar
  40. 40.
    Saalwächter K. Microstructure and dynamics of elastomers as studied by advanced low-resolution NMR methods. Rubber Chem Technol. 2012;85:350–86.CrossRefGoogle Scholar
  41. 41.
    Saalwächter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog Nucl Magn Reson Spectrosc. 2007;51:1–35.CrossRefGoogle Scholar
  42. 42.
    Carr HY, Purcell HM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8.CrossRefGoogle Scholar
  43. 43.
    Meiboom S, Gill D. Modified spin echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.CrossRefGoogle Scholar
  44. 44.
    Bergman E, Yeredor A, Nevo U. An estimation method for improved extraction of the decay curve signal from CPMG-like measurements with a unilateral scanner. J Magn Reson. 2014;245:87–93.CrossRefGoogle Scholar
  45. 45.
    Borneman TW, Hürlimann MD, Cory DG. Application of optimal control to CPMG refocusing pulse design. J Magn Reson. 2010;207:220–33.CrossRefGoogle Scholar
  46. 46.
    Marble A. Optimization of echo amplitudes resulting from a series of 90° pulses in an inhomogeneous static field. J Magn Reson. 2012;216:37–42.CrossRefGoogle Scholar
  47. 47.
    Mandal S, Oh S, Hürlimann MD. Absolute phase effects on CPMG-type pulse sequences. J Magn Reson. 2015;261:121–32.CrossRefGoogle Scholar
  48. 48.
    Hürlimann MD. Ex situ measurement of one- and two-dimensional distribution functions. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 57–86.CrossRefGoogle Scholar
  49. 49.
    Voda MA, Van Duynhoven J. Bench-top NMR – food: solid fat content determination and emulsion droplet sizing. In: Johns M, Fridjonson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 86–109.CrossRefGoogle Scholar
  50. 50.
    Cudaj M, Hofe T, Wilhelm M, Vargas MA, Guthausen G. Medium resolution NMR at 20 MHz: possibilities and challenges. In: Renou J-P, Belton P, Webb GA, editors. Magnetic resonance in food science. An exciting future. Cambridge: Royal Society of Chemistry; 2011. p. 46–56.Google Scholar
  51. 51.
    Bernewitz R, Horvat M, Schuchmann H-P, Guthausen G. Structures in food: possibilities of imaging and diffusometry. In: van Duynhoven J, Belton P, Webb GA, editors. Magnetic resonance in food science. Food for thought. Cambridge: Royal Society of Chemistry; 2013. p. 91–102.Google Scholar
  52. 52.
    Guthausen G. Analysis of food and emulsions. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.02.011.CrossRefGoogle Scholar
  53. 53.
    van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Annu Rep NMR Spectrosc. 2010;69:145–97.CrossRefGoogle Scholar
  54. 54.
    Trezza E, Haiduc AM, Goudappel GJW, van Duynhoven JPM. Rapid phase compositional assessment of lipid-based food products by time domain NMR. Magn Reson Chem. 2006;44:1023–30.CrossRefGoogle Scholar
  55. 55.
    Todt H, Burk W, Guthausen G, Guthausen A, Kamlowski A, Schmalbein D. Quality control with time-domain NMR. Eur J Lipid Sci Technol. 2001;103:835–40.CrossRefGoogle Scholar
  56. 56.
    Kim SM, McCarthy MJ. Investigation of olive accession using nuclear magnetic resonance. J Agric Life Sci. 2010;41:75–82.Google Scholar
  57. 57.
    Bernewitz R, Guan X, Guthausen G, Wolf F, Schuchmann H-P. PFG-NMR on double emulsions: a detailed look into molecular processes. In: Renou J-P, Belton P, Webb GA, editors. Magnetic resonance in food science. An exciting future. Cambridge: Royal Society of Chemistry; 2011. p. 46–56.Google Scholar
  58. 58.
    Guthausen G, Todt H, Burk W, Schmalbein D, Kamlowski A. Time-domain NMR in quality control: (C) single-sided NMR in foods. In: Webb GA, editor. Modern magnetic resonance. Berlin: Springer; 2006. p. 1873–97.Google Scholar
  59. 59.
    Petrov OV, Hay J, Balcom BJ. Fat and moisture content determination with unilateral NMR. Food Res Int. 2008;7:758–64.CrossRefGoogle Scholar
  60. 60.
    Veliyullin E, Masthikin IV, Marble AE, Balcom BJ. Rapid determination of fat content in packed products by unilateral NMR. J Sci Food Agric. 2008;88:2563–7.CrossRefGoogle Scholar
  61. 61.
    Nakashima Y. Development of a single-sided nuclear magnetic resonance scanner for the in vivo quantification of live cattle marbling. Appl Magn Reson. 2015;46:593–606.CrossRefGoogle Scholar
  62. 62.
    Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun. 1982;27:213–27.CrossRefGoogle Scholar
  63. 63.
    Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of multiexponential decay data. J Magn Reson. 2000;147:273–85.CrossRefGoogle Scholar
  64. 64.
    Lamanna R. On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems. Concepts Magn Reson. 2005;26A:87–90.CrossRefGoogle Scholar
  65. 65.
    Venkataramanan L, Song YQ, Hürlimann MD. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans Signal Process. 2002;50:1017–26.CrossRefGoogle Scholar
  66. 66.
    Song Y-Q. A 2D NMR method to characterize granular structure of dairy products. Prog Nucl Magn Reson Spectrosc. 2009;55:324–34.CrossRefGoogle Scholar
  67. 67.
    Hürlimann MD, Burcaw L, Song Y-Q. Quantitative characterization of food products by two-dimensional D-T2 and T1-T2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297:303–11.CrossRefGoogle Scholar
  68. 68.
    Callaghan PT. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press; 1991.Google Scholar
  69. 69.
    Blümich B. NMR imaging of materials. Oxford: Clarendon; 2000.Google Scholar
  70. 70.
    Blümich B. Applications in biology and medicine. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 187–202.CrossRefGoogle Scholar
  71. 71.
    Danieli E, Blümich B. Single-sided magnetic resonance depth profiling in biological and materials science. J Magn Reson. 2013;299:142–54.CrossRefGoogle Scholar
  72. 72.
    Oligschläger D. Advances in compact stray-field NMR. Aachen: Dissertation RWTH Aachen University; 2015.Google Scholar
  73. 73.
    Rössler E, Mattea C, Stapf S. Feasibility of high-resolution one-dimensional relaxation imaging at low field using a single-sided NMR scanner applied to articular cartilage. J Magn Reson. 2015;251:43–51.CrossRefGoogle Scholar
  74. 74.
    Windt CW, Blümler P. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. Tree Physiol. 2015;35:366–75.CrossRefGoogle Scholar
  75. 75.
    Windt CW, Soltner H, van Dusschoten D, Blümler P. A portable Halbach magnet that can be opened and closed without force: the NMR-CUFF. J Magn Reson. 2011;208:27–33.CrossRefGoogle Scholar
  76. 76.
    Jones M, Aptaker PS, Cox J, Gardiner BA, McDonald PJ. A transportable magnetic resonance imaging system for in-situ measurements of living trees: the tree hugger. J Magn Reson. 2012;218:133–40.CrossRefGoogle Scholar
  77. 77.
    Geya Y, Kimura T, Fujisaki H, Terada Y, Kose K, Haishi T, et al. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system. J Magn Reson. 2013;226:45–51.CrossRefGoogle Scholar
  78. 78.
    Zhang L, McCarthy MJ. NMR relaxometry study of development of freeze damage in mandarin orange. J Sci Food Agric. 2015;96:3133–9.CrossRefGoogle Scholar
  79. 79.
    Le P, Zhang L, Lim V, McCarthy MJ, Nitin N. A novel approach for measuring resistance of Escherichia coli and Listeria monocytogenes to hydrogen peroxide using label-free magnetic resonance imaging and relaxometry. Food Control. 2015;50:560–7.CrossRefGoogle Scholar
  80. 80.
    Zhang L, McCarthy MJ. Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol Technol. 2013;77:59–66.CrossRefGoogle Scholar
  81. 81.
    Kirtil E, Oztop HM, Sirjariyawat A, Ngamchuachit P, Barrett DM, McCarthy MJ. Effect of pectin methyl esterase (PME) and CaCl2 infusion on the cell integrity of fresh-cut and frozen-thawed mangoes: an NMR relaxometry study. Food Res Int. 2014;66:409–16.CrossRefGoogle Scholar
  82. 82.
    Ipek-Ugay S, Direßle T, Ledwig M, Guo J, Hirsch S, Sack I, et al. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples. J Magn Reson. 2015;251:13–8.CrossRefGoogle Scholar
  83. 83.
    Macmillan B, Veliyulin E, Lamason C, Balcom BJ. Quantitative magnetic resonance measurements of low moisture content wood. Can J For Res. 2011;41:2158–62.CrossRefGoogle Scholar
  84. 84.
    Lamason C, Macmillan B, Balcom B, Leblonz B. Water content measurement in black spruce and aspen sapwood with benchtop and portable magnetic resonance devices. Wood Mat Eng. 2015;10:86–93.CrossRefGoogle Scholar
  85. 85.
    Adams A. Analysis of solid technical polymers by compact NMR. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.04.003.CrossRefGoogle Scholar
  86. 86.
    Schäler K, Roos M, Micke P, Golitsyn Y, Seidlitz A, Thurn-Albrecht T, et al. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl Magn Reson. 2015;72:50–63.CrossRefGoogle Scholar
  87. 87.
    Kolz J. Applications in materials science and cultural heritage. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 203–22.CrossRefGoogle Scholar
  88. 88.
    Maus A, Hertlein C, Saalwächter K. A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys. 2006;207:1150–8.CrossRefGoogle Scholar
  89. 89.
    Adams A, Adams M, Blümich B, Kocks H-J, Hilgert O, Zimmermann S. Nondestructive testing procedure for evaluation of fracture-mechanically relevant abnormalities in partially crystalline polymers. 3R Int. 2010;4:216–25.Google Scholar
  90. 90.
    Adams A, Piechatzek A, Schmitt G, Siegmund G. Single-sided nuclear magnetic resonance for condition monitoring of cross-linked polyethylene exposed to aggressive media. Anal Chim Acta. 2015;887:163–71.CrossRefGoogle Scholar
  91. 91.
    Blümich B, Adams-Buda A, Baias M. Alterung von Polyethylen: Zerstörungsfreies Prüfen mit mobiler magnetischer Resonanz. GWF Gas Erdgas. 2007;148:95–8.Google Scholar
  92. 92.
    Kwamen R, Blümich B, Buda A. Estimation of self-diffusion coefficients of small penentrants in semicrystaline polymers using single-sided NMR. Macromol Rapid Commun. 2012;33:943–7.CrossRefGoogle Scholar
  93. 93.
    Reuvers NJW, Huinink HP, Fischer HR, Adan OG. Quantitative water uptake study in thin nylon-6 films with NMR imaging. Macromol. 2012;45:1937–45.CrossRefGoogle Scholar
  94. 94.
    Hedesiu C, Demco DE, Kleppinger R, Adams-Buda A, Blümich B, Remerie K, Litvinov VM. The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer. 2007;48:763–77.CrossRefGoogle Scholar
  95. 95.
    Teymouri Y, Kwamen R, Blümich B. Aging and degradation of LDPE by compact NMR. Macromol Mat Chem. 2015;300:1063–2070.CrossRefGoogle Scholar
  96. 96.
    Teymouri Y, Adams A, Blümich B. Compact low-field NMR: unmasking morphological changes from solvent-induced crystallization in polyethylene. Eur Polym J. 2016;80:48–57.CrossRefGoogle Scholar
  97. 97.
    Sun N, Wenzel M, Adams A. Morphology of high-density polyethylene pipes stored under hydrostatic pressure at elevated temperature. Polymer. 2014;55:3792–800.CrossRefGoogle Scholar
  98. 98.
    Campise F, Roth LE, Acosta RH, Villar MA, Vallés EM, Monti GA, et al. Contribution of linear guest and structural pendant chains to relaxation dynamics in model polymer networks probed by time-domain 1H NMR. Macromol. 2016;49:387–94.CrossRefGoogle Scholar
  99. 99.
    Doughty PJ, McDonald PJ. Drying coatings and other applications with GARField. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 89–106.CrossRefGoogle Scholar
  100. 100.
    Zheng X, Xianjun C, Kaikai M, Yunfeng X. Novel unilateral NMR sensor for assessing the aging status of silicone rubber insulator. IEEE Sens J. 2016;16:1168–75.CrossRefGoogle Scholar
  101. 101.
    Blümich B. Compact NMR helps tire, rubber testing. Rubber Plastic News, 8 Sept 2014. p. 31–3.Google Scholar
  102. 102.
    Chalcea RI, Fechete R, Culea E, Demco DE, Blümich B. Distributions of transverse relaxation times for soft solids measured in strongly inhomogeneous magnetic fields. J Magn Reson. 2009;196:179–90.Google Scholar
  103. 103.
    Höpfner J, Guthausen G, Saalwächter K, Wilhelm M. Network structure and inhomogeneities of model and commercial polyelectrolyte hydrogels as investigated by low-field proton NMR techniques. Macromolecules. 2014;47:4251–65.CrossRefGoogle Scholar
  104. 104.
    Song YQ. Magnetic resonance in porous media (MRPM): a perspective. J Magn Reson. 2013;229:12–24.CrossRefGoogle Scholar
  105. 105.
    Hürlimann MD, Song Y-Q, Fantazzini P, Bortolotti V. Magnetic resonance in porous media. AIP conference proceedings 1081. New York: Am Inst Phys; 2008.Google Scholar
  106. 106.
    Xie R, Xiao L. Advanced fluid typing methods for NMR logging. Pet Sci. 2011;8:163–9.CrossRefGoogle Scholar
  107. 107.
    Paciok E, Haber A, van Landeghem M, Blümich B. Relaxation exchange in nanoporous silica by low-field NMR. Z Physiol Chem. 2012;226:1243–57.CrossRefGoogle Scholar
  108. 108.
    Fleury M, Soualem J. Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments. J Colloid Interface Sci. 2009;336:250–9.CrossRefGoogle Scholar
  109. 109.
    Van Landeghem M, Haber A, d’Espinose de Lacaillerie J-B, Blümich B. Analysis of multisite 2D relaxation exchange NMR. Concepts Magn Reson. 2010;36A:153–69.CrossRefGoogle Scholar
  110. 110.
    Kittler WC, Galvosas P, Hunter MW. Parallel acquisition of q-space using second order magnetic fields for single-shot diffusion measurements. J Magn Reson. 2014;244:46–52.CrossRefGoogle Scholar
  111. 111.
    Kittler WC, Obruchkov S, Galvosas P, Hunter MW. Pulsed second order field NMR for real time PGSE and single-shot surface to volume ratio measurements. J Magn Reson. 2014;247:42–9.CrossRefGoogle Scholar
  112. 112.
    Mandal S, Song Y-Q. Heternuclear J-coupling measurements in grossly inhomogeneous magnetic fields. J Magn Reson. 2015;255:15–27.CrossRefGoogle Scholar
  113. 113.
    Donaldson M, Freed D, Mandal S, Song Y-Q. Chemical analysis using low-field magnetic resonance. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.03.008.CrossRefGoogle Scholar
  114. 114.
    Hirasaki GJ. NMR applications in petroleum reservoir studies. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 321–39.CrossRefGoogle Scholar
  115. 115.
    Hu H-T, Xiao L. Investigation characteristics of NMR wireline logging tools. Chin J Magn Reson. 2010;27:572. ISSN 1000–4556.Google Scholar
  116. 116.
    Xiao L, Liu K. Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs. New J Phys. 2011;13:045003.CrossRefGoogle Scholar
  117. 117.
    Liu H, Xiao L, Guo B, Zhang Z, Zong F, Deng F, et al. Heavy oil component characterization with multi-dimensional unilateral NMR. Pet Sci. 2013;10:402–7.CrossRefGoogle Scholar
  118. 118.
    Neudert O, Stapf S, Mattea C. Diffusion exchange NMR spectroscopy in inhomogeneous magnetic fields. J Magn Reson. 2011;208:256–61.CrossRefGoogle Scholar
  119. 119.
    Song Y-Q. Novel two dimensional NMR of diffusion and relaxation for material characterization. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 163–82.CrossRefGoogle Scholar
  120. 120.
    Xiao L, Liu H, Deng F, Zhang Z, An T, Zong F, Anferov V, Anferova S. Probing internal gradients dependence in sandstones with multi-dimensional NMR. Microporous Mesoporous Mater. 2013;178:90–3.CrossRefGoogle Scholar
  121. 121.
    Xiao L, Liao G, Xie R, Wang Z. Inversion of NMR relaxation measurements in well logging. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 501–17.Google Scholar
  122. 122.
    Heaton NJ, Freedman R, Karminik R, Taherian R, Walter K, DePavia L. Applications of a new-generation NMR wireline logging tool. In: SPE7740, editor. Presented at the 77th SPE Annual Technical Conference and Exhibition, San Antonio. 2002.Google Scholar
  123. 123.
    Perlo J, Danieli E, Perlo J, Blümich B, Casanova F. Optimized slim-line logging tool to measure soil moisture in situ. J Magn Reson. 2013;233:74–9.CrossRefGoogle Scholar
  124. 124.
    Sucre O, Pohlmeier A, Minière A, Blümich B. Low-field NMR logging sensor for measuring hydraulic parameters of model soils. J Hydrol. 2011;406:30–8.CrossRefGoogle Scholar
  125. 125.
    Walsh D, Turner P, Grunewald E, Zhang H, Butler Jr JJ, Reboulet E, et al. A small-diameter NMR logging tool for groundwater investigations. Ground Water. 2013;51:914–26.CrossRefGoogle Scholar
  126. 126.
    Hertrich M. Imaging of groundwater with nuclear magnetic resonance. Progr Nucl Magn Reson Spectrosc. 2008;53:227–48.CrossRefGoogle Scholar
  127. 127.
    Van As H, Homan N, Vergeldt FJ, Windt CW. MRI of water transport in the soil-plant-atmosphere continuum. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 315–30.Google Scholar
  128. 128.
    Conte P, Berns AE, Pohlmeier A, Alonzo G, editors. Special issue: Applications and new developments of magnetic resonance techniques in soil science. Open Magn Reson J. 2010;3. ISSN 1874–7898.Google Scholar
  129. 129.
    Jaeger F, Shchegolikhina A, Van As H, Schaumann GE. Proton NMR relaxometry as a useful tool to evaluate swelling processes in peat soils. Open Magn Reson J. 2010;3:27–45.CrossRefGoogle Scholar
  130. 130.
    Jaeger F, Bowe S, Van As H, Schaumann GE. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur J Soil Sci. 2009;60:1052–64.CrossRefGoogle Scholar
  131. 131.
    Stinagciu L, Pohlmeier A, Blümler P, Weihermüller L, van Dusschoten V, Stapf S, et al. Characterization of unsaturated porous media by high-field and low-field NMR relaxometry. Water Resource Res. 2009;45:W08412.Google Scholar
  132. 132.
    Blümich B, Casanova F, Dabrowski M, Danieli E, Evertz L, Haber A, et al. Small-scale instrumentation for nuclear magnetic resonance of porous media. New J Phys. 2011;13:015003.CrossRefGoogle Scholar
  133. 133.
    Blümich B, Mauler J, Haber A, Perlo J, Danieli E, Casanova F. Mobile NMR for geophysical analysis and materials testing. Pet Sci. 2009;6:1–7.CrossRefGoogle Scholar
  134. 134.
    Freeman R, Anand V, Grand B, Ganesan K, Tabrizi P, Torres R, et al. A compact high-performance low-field NMR apparatus for measurement on fluids at very high pressures and temperatures. Rev Sci Instrum. 2014;85:025102–1–10.Google Scholar
  135. 135.
    García-Naranjo JC, Mastikhin IV, Colpitts BG, Balcom BJ. A unilateral magnet with an extended constant magnetic field gradient. J Magn Reson. 2010;207:337–44.CrossRefGoogle Scholar
  136. 136.
    Qi Y, Liu N, Wang W. The observation of residual oil evolution during water flooding using NMR D-T2 maps. Appl Magn Reson. 2015;46:1089–98.CrossRefGoogle Scholar
  137. 137.
    Liu Z-Y, Li Y-Q, Cui M-H, Wang F-Y, Prasiddhianti AG. Pore-scale investigation of residual oil displacement in surfactant–polymer flooding using nuclear magnetic resonance experiments. Pet Sci. 2016;13:91–9.CrossRefGoogle Scholar
  138. 138.
    Ouelette M, Li M, Liao G, Hussein EMA, Romero-Zeron L, Balcom BJ. Rock core analysis: metal core holders for magnetic resonance imaging under reservoid conditions. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 190–309.Google Scholar
  139. 139.
    Fechete R, Demco DE, Zhu X, Tillmann W, Möller M. Water states and dynamics in perfluorinated ionomer membranes by 1H one- and two-dimensional NMR spectroscopy, relaxometry, and diffusometry. Chem Phys Lett. 2014;597:6–15.CrossRefGoogle Scholar
  140. 140.
    Marble AE, LaPlante G, Mastikhin IV, Balcom BJ. Magnetic resonance detection of water in composite sandwich structures. NDT E Int. 2009;42:404–9.CrossRefGoogle Scholar
  141. 141.
    Deng F, Xiao L, Liao G, Zong F, Chen W. A new approach of two-dimensional NMR relaxation measurement in flowing fluid. Appl Magn Reson. 2014;45:179–92.CrossRefGoogle Scholar
  142. 142.
    Gomez BF, Nunes LMS, Lobo CMS, Carvalho AS, Cabeca LF, Colnago LA. In situ analysis of copper electro-deposition reaction using unilateral NMR sensor. J Magn Reson. 2015;261:83–6.CrossRefGoogle Scholar
  143. 143.
    Hailu K, Guthausen G, Becker W, König A, Bendfeld A, Geissler E. In-situ characterization of the cure reaction of HTPB and IPDI by simultaneous NMR and IR measurements. Polym Test. 2010;29:513–9.CrossRefGoogle Scholar
  144. 144.
    Marchi Netto A, Steinhaus J, Hausnerova B, Moeginger B, Blümich B. Time-resolved study of the photo-curing process of dental resins with the NMR-MOUSE. Appl Magn Reson. 2013;44:1027–39.CrossRefGoogle Scholar
  145. 145.
    Van Landeghem M, d’Espinose de Lacaillerie J-B, Blümich B, Korb J-P, Bresson B. The roles of hydration and evaporation during the drying of a cement paste by localized NMR. Cem Concr Res. 2013;48:86–96.CrossRefGoogle Scholar
  146. 146.
    Cano-Barrita PFJ, Marble AE, Balcom BJ, Garcia JC, Masthikin IV, Thomas MDA, et al. Embedded NMR sensors to monitor water loss causes by hydration in Portland cement mortar. Cem Concr Res. 2009;30:324–8.CrossRefGoogle Scholar
  147. 147.
    Díaz-Díaz F, Cano-Barrita PFJ, Balcom BJ, Solís-Nájera SE, Rodríguez AO. Embedded NMR sensor to monitor compressive strength development and pore size distribution in hydrating concrete. Sensors. 2013;13:15985–99.CrossRefGoogle Scholar
  148. 148.
    Oligschläger D, Kupferschläger K, Poschadel T, Watzlaw J, Blümich B. Miniature mobile NMR sensors for material testing and moisture-monitoring. Diffus Fundam. 2014;22:1–25.Google Scholar
  149. 149.
    Proietti N, Capitani D, Lamanna R, Presciutti F, Rossi E, Segre AL. Fresco paintings studied by unilateral NMR. J Magn Reson. 2005;177:111–7.CrossRefGoogle Scholar
  150. 150.
    Di Tullio V, Proietti N, Gobbino M, Capitani D, Olmi R, Priori S, et al. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome. Anal Bioanal Chem. 2010;396:1885–96.CrossRefGoogle Scholar
  151. 151.
    Di Tullio V, Proietti N, Capitani D, Nicolini I, Mecchi AM. NMR depth profiling as a non-invasive analytical tool to probe the penetration depth of hydrophobic treatments and inhomogeneities in treated porous stones. Anal Bioanal Chem. 2011;400:3151–64.CrossRefGoogle Scholar
  152. 152.
    Haber A, Blümich B, Souvorova D, Del Federico E. Ancient Roman wall paintings mapped nondestructively by portable NMR. Anal Bioanal Chem. 2011;401:1441–52.CrossRefGoogle Scholar
  153. 153.
    Fukunaga K, Meldrum T, Zia W, Ohno M, Fuchida T, Blümich B. Nondestructive investigation of the internal structure of fresco paintings. IEEE Digit Herit. 2013;1:81–8.Google Scholar
  154. 154.
    Rühli F, Böni T, Perlo J, Casanova F, Baias M, Egarter E, et al. Non-invasive spatial tissue discrimination in ancient mummies and bones in situ by portable nuclear magnetic resonance. J Cult Herit. 2007;8:257–63.CrossRefGoogle Scholar
  155. 155.
    Senni L, Casieri C, Bovino A, Gaetani MC, De Luca F. A portable NMR sensor for moisture monitoring of wooden works of art, particularly paintings on wood. Wood Sci Technol. 2011;43:167–80.CrossRefGoogle Scholar
  156. 156.
    Presciutti F, Perlo J, Casanova F, Glöggler S, Miliani C, Blümich B, et al. Noninvasive nuclear magnetic resonance profiling of painting layers. Appl Phys Lett. 2008;93:033505-1–3.CrossRefGoogle Scholar
  157. 157.
    Del Federico E, Centeno SA, Kehlet C, Currier P, Stockman D, Jerschow A. Unilateral NMR applied to the conservation of works of art. Anal Bioanal Chem. 2010;396:213–20.CrossRefGoogle Scholar
  158. 158.
    Fife GR, Stabik B, Kelley AE, King JN, Blümich B, Hoppenbrouwers R, et al. Characterization of aging and solvent treatments of painted surfaces using single-sided NMR. Magn Reson Chem. 2015;53:58–63.CrossRefGoogle Scholar
  159. 159.
    Masic A, Chierotti MR, Gobetto R, Martra G, Rabin I, Coluccia S. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment. Anal Bioanal Chem. 2012;402:1551–7.CrossRefGoogle Scholar
  160. 160.
    Zhu L, Del Federico E, Llott AJ, Klokkernes T, Kehlet C, Jerschow A. MRI and unilateral NMR study of reindeer skin tanning processes. Anal Chem. 2015;87:3820–5.CrossRefGoogle Scholar
  161. 161.
    Badea E, Sendrea C, Carsote C, Adams A, Blümich B. Unilateral NMR and thermal microscopy studies of vegetable tanned leather exposed to dehydrothermal treatment and light irradiation. Microchem J. 2016;129:158–65.CrossRefGoogle Scholar
  162. 162.
    Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006.Google Scholar
  163. 163.
    Kose K, Haishi T, Handa S. Applications of permanent-magnet compact MRI systems. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 365–82.Google Scholar
  164. 164.
    Kose K. Compact MRI for chemical engineering. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 77–88.CrossRefGoogle Scholar
  165. 165.
    Rössler E, Mattea C, Mollava A, Stapf S. Low-field one-dimensional and direction dependent relaxation imaging of bovine articular cartilage. J Magn Reson. 2011;213:112–8.CrossRefGoogle Scholar
  166. 166.
    McDonald PJ, Akhmerov A, Backhouse LJ, Pitts S. Magnetic resonance profiling of human skin in vivo using GARField magnets. J Pharm Sci. 2005;94:1850–60.CrossRefGoogle Scholar
  167. 167.
    Ciampi E, van Ginkel M, McDonald PJ, Pitts S, Bonnist EY, Singleton S, et al. Dynamic in vivo mapping of model moisturiser ingress into human skin by GARField MRI. NMR Biomed. 2010;24:135–44.CrossRefGoogle Scholar
  168. 168.
    Van As H, van Duynhoven J. MRI of plants and foods. J Magn Reson. 2013;229:25–34.CrossRefGoogle Scholar
  169. 169.
    Tomiha S, Iita N, Okada F, Handa S, Kose K. Relaxation time measurements of bone marrow protons in the calcaneus using a compact MRI system at 0.2 Tesla field strength. Magn Reson Chem. 2008;60:485–8.CrossRefGoogle Scholar
  170. 170.
    Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H, et al. Development of a mobile magnetic resonance imaging system for outdoor tree measurements. Rev Sci Instrum. 2011;82:053704.CrossRefGoogle Scholar
  171. 171.
    Nagata A, Kose K, Terada Y. Development of an outdoor MRI system for measuring flow in a living tree. J Magn Reson. 2016;265:129–38.CrossRefGoogle Scholar
  172. 172.
    Van As H, Schenen T, Vergeldt FJ. MRI of intact plants. Photosynth Res. 2009;102:213–22.CrossRefGoogle Scholar
  173. 173.
    Windt CW, Vergeldt FJ, de Jager PA, van As H. MRI of long-distance water-transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006;29:1715–29.CrossRefGoogle Scholar
  174. 174.
    Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, et al. Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol. 2011;38:968–83.CrossRefGoogle Scholar
  175. 175.
    van Duynhoven JPM, Goudappel GJW, Weglarz WP, Windt CW, Cabrer PR, Mohoric A, et al. Noninvasive assessment of moisture migration in food products by MRI. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 331–52.Google Scholar
  176. 176.
    McCarthy MJ, Gambhir PN, Goloshevsky AG. NMR for food quality control. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 471–89.CrossRefGoogle Scholar
  177. 177.
    Milczarek RR, McCarthy MJ. Low-field MR sensors for fruit inspection. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 289–302.Google Scholar
  178. 178.
    Zhang L, McCarthy MJ. Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol. 2012;67:96–101.CrossRefGoogle Scholar
  179. 179.
    Tao F, Zhang L, McCarty MJ, Beckles DM, Saltveit M. Magnetic resonance imaging provides spatial resolution of chilling injury in Micro-Tom tomato (solanum lycopersicum L.) fruit. Postharvest Biol Technol. 2014;97:62–7.CrossRefGoogle Scholar
  180. 180.
    Mitchell J, Staniland J, Wilson A, Howe A, Clarke A, Fordham EJ, et al. Magnetic resonance imaging of chemical EOR in core to complement field pilot studies. Aberdeen: International Symposium, Society of Core Analysts. 2012. SCA2012–30.Google Scholar
  181. 181.
    Romero-Zeron LB, Ongsurakul S, Li L, Balcom B. Visualization of the effect of porous media wettability on polymer flooding performance through unconsolidated porous media using magnetic resonance imaging. J Pet Sci Technol. 2010;28:52–67.CrossRefGoogle Scholar
  182. 182.
    Petrov OV, Ersland G, Balcom BJ. T2 distribution mapping profiles with phase-encode MRI. J Magn Reson. 2011;209:39–46.CrossRefGoogle Scholar
  183. 183.
    Mitchell J, Edwards JE, Fordham E, Stanlland J, Chassagne R, Cherukupalli PK, et al. Quantitative remaining oil interpretation using magnetic resonance: from the laboratory to the pilot. SPE EOR Conference. www.onepetro.org 2012. SPE-154704-MS.  https://doi.org/10.2118/154704-MS.
  184. 184.
    Ferno MA, Haugen A, Graue A. Visualizing oil displacement in fractured carbonate rocks-impacts on oil recovery at different hydrostatic stress and wettability conditions. 5th US-Canada Rock Mechanics Symposium. www.onepetro.org 2010. ARMA-10-288.
  185. 185.
    Kwak HT, Funk JJ, Yousef AA, Balcom BJ. New insights into microscopic fluid/rock Interaction: MR-CT microscopy approach. SPE Ann Tech Conf Exhib. www.onepetro.org 2012. SPE-159194-MS.  https://doi.org/10.2118/159194-MS.
  186. 186.
    Meybodi HE, Kharrat R, Araghi MN. Experimental studying of pore morphology and wettability effects on microscopic and macroscopic displacement efficiency of polymer flooding. J Pet Sci Technol. 2010;78:347–63.Google Scholar
  187. 187.
    Bortolotti V, Macini P, Mesini EN, Fantazzini P, Gombia M, Srisuriyachai F. Probing wettability reversal in carbonatic rocks by spatially resolved and non-resolved 1H-NMR relaxation analysis. SPE Ann Tech Conf Exhib. www.onepetro.org 2010. SPE-133937-MS.  https://doi.org/10.2118/133937-MS.
  188. 188.
    Han H, Ouellette M, MacMillan B, Goora F, MacGregor R, Green D, et al. High pressure magnetic resonance imaging with metallic vessels. J Magn Reson. 2011;213:90–7.CrossRefGoogle Scholar
  189. 189.
    Merz S, Pohlmeier A, Vanderborght J, van Dusschoten D, Vereecken H. Moisture profiles of the upper soil layer during evaporation monitored by NMR. Water Resour Res. 2014;50:5184–95.CrossRefGoogle Scholar
  190. 190.
    Haynes H, Lakshmanan S, Ockelford A-M, Vignaga E, Holmes WM. The emerging use of magnetic resonance imaging to study river bed dynamics. Spetrosc Eur. 2015;21:6–8.Google Scholar
  191. 191.
    Danieli E, Berdel K, Perlo J, Michaeli W, Masberg U, Blümich B, et al. Determining object boundaries from MR images with sub-pixel resolution: towards in-line inspection with a mobile tomograph. J Magn Reson. 2010;207:53–8.CrossRefGoogle Scholar
  192. 192.
    Lavenson DM, Tozzi EJ, McCarthy MJ, Powell RL. Effective diffusivities of BSA in cellulosic fiber beds measured with magnetic resonance imaging. Cellulose. 2012;19:1085–95.Google Scholar
  193. 193.
    Perlo J, Siletta E, Danieli E, Cattaneo G, Acosta R, Blümich B, et al. Desktop MRI as a promising tool for mapping intra-aneurismal flow. Magn Reson Imaging. 2015;33:328–35.CrossRefGoogle Scholar
  194. 194.
    Lim V, Hobby A, McCarthy MJ, McCarthy KL. Laminar mixing of miscible fluids in a SMX mixer evaluated by magnetic resonance imaging (MRI). Chem Eng Sci. 2015;137:1024–33.CrossRefGoogle Scholar
  195. 195.
    Mihailova O, Lim V, McCarthy MJ, McCarthy KL, Bakalis S. Laminar mixing in a SMX static mixer evaluated by positron emission particle tracking (PEPT) and magnetic resonance imaging (MRI). Chem Eng Sci. 2015;137:1014–23.CrossRefGoogle Scholar
  196. 196.
    Adachi S, Ozeki T, Shigeki R, Handa S, Kose K, Haishi T, et al. Development of a compact magnetic resonance imaging system for a cold room. Rev Sci Instrum. 2009;80:054701.CrossRefGoogle Scholar
  197. 197.
    Nakamura T, Tamada D, Yanagi Y, Itoh Y, Nemoto T, Utumi H, et al. Development of a superconducting bulk magnet for NMR and MRI. J Magn Reson. 2015;259:68–75.CrossRefGoogle Scholar
  198. 198.
    Ogawa K, Nakamura T, Terada Y, Kose K, Haishi T. Development of a magnetic resonance microscope using a high Tc bulk superconducting magnet. Appl Phys Lett. 2011;98:234101.CrossRefGoogle Scholar
  199. 199.
    Nordon A, McGill CA, Littlejohn D. Evaluation of low-field nuclear magnetic resonance spectrometry for at-line process analysis. Appl Spectrosc. 2002;56:75–82.CrossRefGoogle Scholar
  200. 200.
    Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60:52–70.CrossRefGoogle Scholar
  201. 201.
    Danieli E, Perlo J, Casanova F, Blümich B. High-performance shimming with permanent magnets. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 487–500.Google Scholar
  202. 202.
    Singh K, Blümich B. NMR spectroscopy with compact instruments. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.02.014.CrossRefGoogle Scholar
  203. 203.
    Riegel SD, Leskowitz GM. Benchtop NMR spectrometers in academic teaching. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.01.001.CrossRefGoogle Scholar
  204. 204.
    Elipe MVS, Milburn RR. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons. Magn Reson Chem. 2016;54:437–43.CrossRefGoogle Scholar
  205. 205.
    Küster SK, Casanova F, Danieli E, Blümich B. High-resolution NMR spectroscopy under the fume hood. Phys Chem Chem Phys. 2011;13:13172–6.CrossRefGoogle Scholar
  206. 206.
    Zientek N, Laurain C, Meyer K, Kraume M, Guthausen G, Maiwald M. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring. J Magn Reson. 2014;249:53–62.CrossRefGoogle Scholar
  207. 207.
    Gouilleux B, Charrier B, Danieli E, Dumez J-N, Akoka S, Felpin FX, et al. Real-time reaction monitoringh by ultrafast 2D NMR on a benchtop spectrometer. Analyst. 2015;140:7854–8.CrossRefGoogle Scholar
  208. 208.
    Gouilleux B, Charrier B, Akoka S, Felpin FX, Rodriguez-Zubiri M, Giraudeau P. Ultrafast 2D NMR on a benchtop spectrometer: applications and perspectives. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.01.014.CrossRefGoogle Scholar
  209. 209.
    Meyr K, Kern S, Zientek N, Guthausen G, Mailwald M. Process control with compact NMR. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.03.016.CrossRefGoogle Scholar
  210. 210.
    Garro-Linck Y, Killner M, Danieli E, Blümich B. Mobile low-field NMR spectroscopy for biodiesel analysis. Appl Magn Reson. 2013;44:41–53.CrossRefGoogle Scholar
  211. 211.
    Killner MHM, Garro-Link Y, Danieli E, Rohwedder JJR, Blümich B. Compact NMR specroscopy for real-time monitoring of a biodiesel production. Fuel. 2014;130:240–7.Google Scholar
  212. 212.
    Obeidat SM. The use of 1H NMR and PCA for quality assessment of gasoline of different octane number. Appl Magn Reson. 2015;46:875–83.CrossRefGoogle Scholar
  213. 213.
    Guthausen G, Garnier A, Reimert R. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy. Appl Spectrosc. 2009;63:1121–7.CrossRefGoogle Scholar
  214. 214.
    Kreyenschulte D, Paciok E, Regestein L, Blümich B, Büchs J. Online monitoring of fermentation processes via non-invasive low-field NMR. Biotechnol Bioeng. 2015;112:810–21.CrossRefGoogle Scholar
  215. 215.
    Vargas MA, Cudaj M, Hailu K, Sachsenheimer K, Guthausen G. Online low-field 1H NMR spectroscopy: monitoring of emulsion polymerization of butyl acrylate. Macromolecules. 2010;43:5561–8.CrossRefGoogle Scholar
  216. 216.
    Sans V, Porwool L, Dragone V, Cronin L. A self-optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem Sci. 2015;6:1258–64.CrossRefGoogle Scholar
  217. 217.
    Cudaj M, Guthausen G, Hofe T, Wilhelm M. SEC-MR-NMR: online coupling of size exclusion chromatography and medium resolution NMR spectroscopy. Macromol Rapid Commun. 2011;32:665–70.CrossRefGoogle Scholar
  218. 218.
    Cudaj M, Guthausen G, Hofe T, Wilhelm M. Online coupling of size exclusion chromatography and low-field 1H-NMR spectroscopy. Macromol Chem Phys. 2012;18:1933–42.CrossRefGoogle Scholar
  219. 219.
    Sillerud LO, McDowell AF, Adolphi N, Serda RE, Adams DP, Vasile MJ, et al. 1H NMR detection of superparamagnetic nanoparticles using a microcoil and novel tuning circuit. J Magn Reson. 2006;181:181–90.CrossRefGoogle Scholar
  220. 220.
    Cistola DP, Robinson MD. Compact NMR relaxometry of relaxometry of human blood and blood components. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.04.020.CrossRefGoogle Scholar
  221. 221.
    Luo Z-X, Fox L, Cummings M, Lowrey TJ, Daviso E. New forntiers in in vitro medical diagnostics by low field T2 magnetic resonance relaxometry. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.02.025.CrossRefGoogle Scholar
  222. 222.
    Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med. 2011;3:71ra16.CrossRefGoogle Scholar
  223. 223.
    Shao H, Min C, Issadore D, Liong M, Yoon TY, Weissleder R, et al. Magnetic nanoparticles and micro NMR for diagnostic applications. Theranostics. 2012;2:55–65.CrossRefGoogle Scholar
  224. 224.
    Min C, Shao H, Issadore D, Liong M, Weissleder R, Lee H. Diagnostic magnetic resonance technology. In: Issadore D, Westerveld RM, editors. Point-of care diagnostics on a chip. Heidelberg: Springer; 2013. p. 197–222.CrossRefGoogle Scholar
  225. 225.
    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez J, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60:892–9.CrossRefGoogle Scholar
  226. 226.
    Utz M, Landers J. Magnetic resonance and microfluidics. Science. 2010;330:1056–8.CrossRefGoogle Scholar
  227. 227.
    Harel E. Lab-on-a-chip detection by magnetic resonance methods. Prog Nucl Magn Reson Spectrosc. 2010;57:293–305.CrossRefGoogle Scholar
  228. 228.
    Finch G, Yilmaz A, Utz M. An optimized detector for in-situ high-resolution NMR in microfluidic devices. J Magn Reson. 2016;262:73–80.CrossRefGoogle Scholar
  229. 229.
    Sun N, Yoon T-J, Lee H, Andress W, Weissleder R, Ham D. Palm NMR and 1-chip NMR. IEEE J Solid State Circ. 2011;46:342–52.CrossRefGoogle Scholar
  230. 230.
    Sun N, Ham D. Handheld NMR systems for biomolecular sensing. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 158–82.Google Scholar
  231. 231.
    Sun N, Liu Y, Qin L, Lee H, Weissleder R, Ham D. Small NMR biomolecular sensors. Solid-State Electron. 2013;84:13–21.CrossRefGoogle Scholar
  232. 232.
    Oligschläger D, Glöggler S, Watzlaw J, Brendel K, Jaschtschuk D, Colell J, et al. A miniaturized NMR-MOUSE with a high magnetic field gradient (Mini-MOUSE). Appl Magn Reson. 2015;46:181–202.CrossRefGoogle Scholar
  233. 233.
    Pille C. Health and nutrition advisor. Bachelor thesis. Münster School of Design, Münster; 2014.Google Scholar
  234. 234.
    Blümich B, Paciok E. Outlook: Quo Vadis, NMR? In: Johns M, Fridjonson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 310–30.Google Scholar
  235. 235.
    Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.CrossRefGoogle Scholar
  236. 236.
    Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem. 2015;87:133–46.CrossRefGoogle Scholar
  237. 237.
    Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10:e0124219.CrossRefGoogle Scholar
  238. 238.
    Wongravee K, Lloyd GR, Silwood CJ, Grootveld M, Brereton RG. Supervised self organizing maps for classification and determination of potentially discriminatory variables: illustrated by application to nuclear magnetic resonance metabolomic profiling. Anal Chem. 2010;82:628–38.CrossRefGoogle Scholar
  239. 239.
    Luchinat C, Tenori L. Analysis of 1H NMR metabolomics: from individual fingerprints to food analysis. In: Capozzi F, Laghi L, Belton PS, editors. Magnetic resonance in food science: defining food by magnetic resonance. Cambridge: Royal Society of Chemistry; 2015. p. 190–200.CrossRefGoogle Scholar
  240. 240.
    Halse ME. Perspectives for hyperpolarization in compact NMR. TrAC Trends Anal Chem. 2016.  https://doi.org/10.1016/j.trac.2016.05.004.CrossRefGoogle Scholar
  241. 241.
    Jeschke G, Frydman L, editors. Hyperpolarization NMR comes of age. A special Issue on the present and future of dynamic nuclear polarization. J Magn Reson. vol. 264. Amsterdam: Elsevier; 2016.Google Scholar
  242. 242.
    Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. Prog Nucl Magn Reson Spectrosc. 2012;66:40–69.CrossRefGoogle Scholar
  243. 243.
    Ardenkjaer-Larsen JH. On the present and future of dissolution-DNP. J Magn Reson. 2016;264:3–12.CrossRefGoogle Scholar
  244. 244.
    Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Progr Magn Reson Spectrosc. 2012;67:1–48.CrossRefGoogle Scholar
  245. 245.
    Wemmer DE. Hyperpolarized xenon biosensors and hyperCest. In: Meersmann T, Brunner E, editors. Hyperpolarized xenon-129 magnetic resonance: concpets, production, techniques and applications. Oxford: Royal Chemistry of Society; 2015. p. 249–60.CrossRefGoogle Scholar
  246. 246.
    Jimenez-Martinez R, Kennedy DJ, Rosenbluth M, Donley EA, Knappe S, Seltzer SJ, et al. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun. 2014;5:3908.CrossRefGoogle Scholar
  247. 247.
    Parker AJ, Zia W, Rehorn CWG, Blümich B. Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections. J Magn Reson. 2016;265:83–9.CrossRefGoogle Scholar
  248. 248.
    Danieli E, Blümich B, Zia, Leonards H. Method for a targeted shaping of the magnetic field of permanent magnets. WO 2015043684 A1 pending. published 2 Apr 2015.Google Scholar
  249. 249.
    Terada Y, Ishi K, Tamada D, Kose K. Power optimization of a planar single-channel shim coil for a permanent magnet circuit. Appl Phys Express. 2013;6:026701.CrossRefGoogle Scholar
  250. 250.
    While PT, Korvink JG. Designing MR shim arrays with irregular coil geometry: theoretical considerations. IEEE Trans Biomed Eng. 2014;61:1614–20.CrossRefGoogle Scholar
  251. 251.
    Ledbetter MP, Crawford CW, Pines A, Wemmer DE, Knappe S, Kitching J, et al. Optical detection of NMR J-spectra at zero magnetic field. J Magn Reson. 2009;199:25–9.CrossRefGoogle Scholar
  252. 252.
    Savukov IM, Lee S-K, Romalis MV. Optical detection of liquid-state NMR. Nature. 2006;442:1021–4.CrossRefGoogle Scholar
  253. 253.
    Meier RC, Höfflin J, Badility V, Wallrabe U, Korvink JG. Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance. J Micromech Microeng. 2014;24:045021.CrossRefGoogle Scholar
  254. 254.
    Spengler N, Moazenzadeh A, Meier RC, Badilita V, Korvink JG, Wallrabe U. Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J Micromech Microeng. 2014;24:034004.CrossRefGoogle Scholar
  255. 255.
    Spengler J, Höfflin J, Moazenzadeh A, Mager D, MacKinnon N, Badilita B, et al. Heternuclear micro-helmholtz coil facilitates μmrRange spatial and sub-hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips. PLoS One. 2016;11:e0146384.CrossRefGoogle Scholar
  256. 256.
    Suefke M, Liebisch A, Blümich B, Appelt S. External high-quality-factor resonator tunes up nuclear magnetic resonance. Nat Phys. 2015;11:767–71.CrossRefGoogle Scholar
  257. 257.
    Anders J, Handwerker J, Ortmanns M, Boero G. A low-power high-sensitivity single-chip receiver for NMR microscopy. J Magn Reson. 2016;266:41–50.CrossRefGoogle Scholar
  258. 258.
    Grisi M, Gualco G, Boero G. A broadband single-chip transceiver for multi-nuclear NMR probes. Rev Sci Instrum. 2015;86:044703.CrossRefGoogle Scholar
  259. 259.
    Ha D, Paulsen J, Sun N, Song Y-Q, Ham D. Scalable NMR spectroscopy with semiconductor chips. Proc Natl Acad Sci. 2014;111:11955–60.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityAachenGermany

Personalised recommendations