Solid-State 17O NMR Spectroscopy of Organic and Biological Molecules

Reference work entry

Abstract

This chapter describes the latest advances in the field of solid-state 17O NMR spectroscopy of organic and biological molecules. Selected examples in the following areas are highlighted: (1) new oxygen-containing functional groups, (2) low-barrier hydrogen bonds, (3) acyl-enzyme intermediates, (4) probing molecular motion in organic solids, and (5) paramagnetic coordination compounds.

Keywords

Solid-state NMR Oxygen-17 Organic Biological Pharmaceuticals Molecular motion Low-barrier hydrogen bond Enzyme Paramagnetic coordination compound 

References

  1. 1.
    Zhu J, Ye E, Terskikh V, Wu G. Solid-state 17O NMR spectroscopy of large protein-ligand complexes. Angew Chem Int Ed. 2010;49:8399–402.CrossRefGoogle Scholar
  2. 2.
    Wu G. Recent developments in solid state NMR of quadrupolar nuclei and applications to biological systems. Biochem Cell Biol. 1998;76:429–42.CrossRefGoogle Scholar
  3. 3.
    Lemaitre V, Smith ME, Watts A. A review of oxygen-17 solid-state NMR of organic materials-towards biological applications. Solid State Nucl Magn Reson. 2004;26:215–35.CrossRefGoogle Scholar
  4. 4.
    Wu G. Solid-state 17O NMR studies of organic and biological molecules. Prog Nucl Magn Reson Spectrosc. 2008;52:118–69.CrossRefGoogle Scholar
  5. 5.
    Yamada K. Recent applications of solid-state 17O NMR. Annu Rep NMR Spectrosc. 2010;70:115–58.CrossRefGoogle Scholar
  6. 6.
    Wong A, Poli F. Solid-state 17O NMR studies of biomolecules. Annu Rep NMR Spectrosc. 2014;83:145–220.CrossRefGoogle Scholar
  7. 7.
    Wu G. Solid-state 17O NMR studies of organic and biological molecules: recent advances and future directions. Solid State Nucl Magn Reson. 2016;73:1–14.CrossRefGoogle Scholar
  8. 8.
    Theodorou V, Skobridis K, Alivertis D, Gerothanassis IP. Synthetic methodologies in organic chemistry involving incorporation of [17O] and [18O] isotopes. J Label Compd Radiopharm. 2014;57:481–508.CrossRefGoogle Scholar
  9. 9.
    Kong K, Tang A, Wang R, Ye E, Terskikh V, Wu G. Are the amide bonds in N-acyl imidazoles twisted? A combined solid-state 17O NMR, crystallographic, and computational study. Can J Chem. 2015;93:451–8.CrossRefGoogle Scholar
  10. 10.
    Lu J, Kong X, Terskikh V, Wu G. Solid-state 17O NMR of oxygen-nitrogen singly bonded compounds: hydroxylammonium chloride and sodium trioxodinitrite (Angeli’s salt). J Chem Phys A. 2015;119:8133–8.CrossRefGoogle Scholar
  11. 11.
    Gao Y, Toubaei A, Kong X, Wu G. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution. Angew Chem Int Ed. 2014;53:11547–51.CrossRefGoogle Scholar
  12. 12.
    Wu G, Zhu JF, Mo X, Wang RY, Terskikh V. Solid-state 17O NMR and computational studies of C-nitrosoarene compounds. J Am Chem Soc. 2010;132:5143–55.CrossRefGoogle Scholar
  13. 13.
    Harris RK. Applications of solid-state NMR to pharmaceutical polymorphism and related matters. J Pharm Pharmacol. 2007;59:225–39.CrossRefGoogle Scholar
  14. 14.
    Kong X, Shan M, Terskikh V, Hung I, Gan Z, Wu G. Solid-state 17O NMR of pharmaceutical compounds: Salicylic acid and aspirin. J Phys Chem B. 2013;117:9643–54.CrossRefGoogle Scholar
  15. 15.
    Vogt FG, Yin H, Forcino RG, Wu L. 17O solid-state NMR as a sensitive probe of hydrogen bonding in crystalline and amorphous solid forms of diflunisal. Mol Pharm. 2013;10:3433–46.CrossRefGoogle Scholar
  16. 16.
    Kong X, Terskikh V, Toubaei A, Wu G. A solid-state 17O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. Can J Chem. 2015;93:945–53.CrossRefGoogle Scholar
  17. 17.
    Lucier BEG, Reidel AR, Schurko RW. Multinuclear solid-state NMR of square-planar platinum complexes-cisplatin and related systems. Can J Chem. 2011;89:919–37.CrossRefGoogle Scholar
  18. 18.
    Michaelis VK, Keeler EG, Ong TC, Craigen KN, Penzel S, Wren JEC, Kroeker S, Griffin RG. Structural insights into bound water in crystalline amino acids: experimental and theoretical 17O NMR. J Phys Chem B. 2015;119:8024–36.CrossRefGoogle Scholar
  19. 19.
    Zhang QW, Zhang HM, Usha MG, Wittebort RJ. 17O NMR and crystalline hydrates. Solid State Nucl Magn Reson. 1996;7:147–54.CrossRefGoogle Scholar
  20. 20.
    Wu G, Rovnyak D, Huang PC, Griffin RG. High-resolution oxygen-17 NMR spectroscopy of solids by multiple-quantum magic-angle spinning. Chem Phys Lett. 1997;277:79–83.CrossRefGoogle Scholar
  21. 21.
    Keeler EG, Michaelis VK, Griffin RG. 17O NMR investigation of water structure and dynamics. J Phys Chem B. 2016;120:7851–8.CrossRefGoogle Scholar
  22. 22.
    Nour S, Widdifield CM, Kobera L, Burgess KMN, Errulat D, Terskikh VV, Bryce DL. Oxygen-17 NMR spectroscopy of water molecules in solid hydrates. Solid State Nucl Magn Reson. 2016;94:189–97.Google Scholar
  23. 23.
    Kong X, Brinkman A, Terskikh V, Wasylishen RE, Bernard GM, Duan Z, Wu Q, Wu G. Proton probability distribution in the O···H···O low-barrier hydrogen bond: a combined solid-state NMR and quantum chemical computational study of dibenzoylmethane and curcumin. J Phys Chem B. 2016;120:11692–704.CrossRefGoogle Scholar
  24. 24.
    Thomas LH, Florence AJ, Wilson CC. Hydrogen atom behaviour imaged in a short intramolecular hydrogen bond using the combined approach of X-ray and neutron diffraction. New J Chem. 2009;33:2486–90.CrossRefGoogle Scholar
  25. 25.
    Parimita SP, Ramshankar YV, Suresh S, Row TNG. Redetermination of curcumin: (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one. Acta Crystallogr E. 2007;63:o860–2.CrossRefGoogle Scholar
  26. 26.
    Tang AW, Kong X, Terskikh V, Wu G. Solid-state 17O NMR of unstable acyl-enzyme intermediates: a direct probe of hydrogen bonding interactions in the oxyanion hole of serine proteases. J Phys Chem B. 2016;120:11142–50.CrossRefGoogle Scholar
  27. 27.
    Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002;102:4501–24.CrossRefGoogle Scholar
  28. 28.
    Ba Y, Ripmeester JA, Ratcliffe CI. Water molecular reorientation in ice and tetrahydrofuran clathrate hydrate from line shape analysis of 17O spin-echo NMR spectra. Can J Chem. 2010;89:1055–64.CrossRefGoogle Scholar
  29. 29.
    Kong X, O’Dell LA, Terskikh V, Ye E, Wang R, Wu G. Variable temperature 17O NMR studies allow quantitative evaluation of molecular dynamics in organic solids. J Am Chem Soc. 2012;134:14609–17.CrossRefGoogle Scholar
  30. 30.
    Wang WD, Lucier BEG, Terskikh VV, Wang W, Huang Y. Wobbling and hopping: Studying dynamics of CO2 adsorbed in metal-organic frameworks via 17O solid-state NMR. J Phys Chem Lett. 2014;5:3360–5.CrossRefGoogle Scholar
  31. 31.
    Adjei-Acheamfour M, Böhmer R. Second-order quadrupole interaction based detection of ultra-slow motions: tensor operator framework for central-transition spectroscopy and the dynamics in hexagonal ice as an experimental example. J Magn Reson. 2014;249:141–9.CrossRefGoogle Scholar
  32. 32.
    Adjei-Acheamfour M, Storek M, Beerwerth J, Böhmer R. Two-dimensional second-order quadrupolar exchange powder spectra for nuclei with half-integer spins. Calculations and an experimental example using oxygen NMR. Solid State Nucl Magn Reson. 2015;71:96–107.CrossRefGoogle Scholar
  33. 33.
    Nava M, Lopez N, Müller P, Wu G, Nocera DG, Cummins CC. Anion-receptor mediated oxidation of carbon monoxide to carbonate by peroxide dianion. J Am Chem Soc. 2015;137:14562–5.CrossRefGoogle Scholar
  34. 34.
    Otting G. Protein NMR using paramagnetic ions. Annu Rev Biophys. 2010;39:387–405.CrossRefGoogle Scholar
  35. 35.
    Jaroniec CP. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes. Solid State Nucl Magn Reson. 2012;43/44:1–13.CrossRefGoogle Scholar
  36. 36.
    Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-state 17O NMR of paramagnetic coordination compounds. Angew Chem Int Ed. 2015;54:4753–7.CrossRefGoogle Scholar
  37. 37.
    Wong A, Smith ME, Terskikh V, Wu G. Obtaining accurate chemical shifts for all magnetic nuclei (1H, 13C, 17O and 27Al) in tris(2,4-pentanedionato-O,O′)aluminium(III): A solid-state NMR case study. Can J Chem. 2011;89:1087–94.CrossRefGoogle Scholar
  38. 38.
    Deligiannakis Y, Louloudi M, Hadjiliadis N. Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev. 2001;204:1–112.CrossRefGoogle Scholar
  39. 39.
    Rapatskiy L, Cox N, Savitsky A, Ames WM, Sander J, Nowaczyk MM, Rögner M, Boussac A, Neese F, Messinger J, Lubitz W. Detection of the water-binding sites of the oxygen-evolving complex of photosystem II using W-band 17O electron–electron double resonance-detected NMR spectroscopy. J Am Chem Soc. 2012;134:16619–34.CrossRefGoogle Scholar
  40. 40.
    Cox N, Lubitz W, Savitsky A. W-band ELDOR-detected NMR (EDNMR) spectroscopy as a versatile technique for the characterisation of transition metal-ligand interactions. Mol Phys. 2013;111:2788–808.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations