Advertisement

Phosphorus Derivatization as a Tool to Enhance Specificity of Quantitative NMR Analysis of Foods

Reference work entry

Abstract

The present contribution describes the application of a phosphorus-derivatization methodology that allows the use of 31P NMR spectroscopy for the determination of minor chemical components in foods. The specificity of the experimental protocol toward hydroxyl- and carboxyl-containing chemical compounds, such as mono- and diglycerides, phenolic compounds, terpenes, etc., allows the facile quantitative determination of these important compounds as minor components in complex food matrices. The glyceride and phenolic profiles obtained using the 31P-tagging NMR methodology are used in combination with 1H NMR data for the quality control and authentication of extra-virgin olive oil and other vegetable oils, but the specificity of this methodology allows it to be easily extended to more diverse foods and food products, that contain phenolic and/or bioactive compounds or other important minor components of analytical interest.

Keywords

NMR spectroscopy Olive oil Vegetable oils Phenolics Terpenic acids Food Chemical derivatization Plant extracts 

References

  1. 1.
    Van Duynhoven J, van Velzen E, Jacobs DM. Quantification of complex mixtures by NMR. In: Webb GA, editor. Annual reports on NMR spectroscopy, vol. 80. Oxford: Academic/Elsevier; 2013. p. 181–236.Google Scholar
  2. 2.
    Spyros A, Dais P. NMR spectroscopy in food analysis, RSC food analysis monographs. London: The Royal Society of Chemistry; 2012. p. 1–343.Google Scholar
  3. 3.
    Mannina L, Sobolev AP, Viel S. Liquid state 1H high field NMR in food analysis. Prog Nucl Magn Reson Spectrosc. 2012;66:1–39.CrossRefGoogle Scholar
  4. 4.
    Spyros A, Dais P. 31P NMR spectroscopy in food analysis. Prog Nucl Magn Reson Spectrosc. 2009;54(3–4):195–207.CrossRefGoogle Scholar
  5. 5.
    Schiff DE, Verkade JG, Metzler RM, Squires TG, Venier CG. Determination of alcohols, phenols, and carboxylic acids using phosphorus-31 NMR spectroscopy. Appl Spectrosc. 1986;40(3):348–51.CrossRefGoogle Scholar
  6. 6.
    Wroblewski AE, Lensink C, Markuszewski R, Verkade JG. 31P NMR spectroscopic analysis of coal pyrolysis condensates and extracts for heteroatom functionalities possessing labile hydrogen. Energy Fuel. 1988;2(6):765–74.CrossRefGoogle Scholar
  7. 7.
    Argyropoulos DS. 31P NMR in wood chemistry: a review of recent progress. Res Chem Intermed. 1995;21(3–5):373–95.CrossRefGoogle Scholar
  8. 8.
    Granata A, Argyropoulos DS. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43(6):1538–44.CrossRefGoogle Scholar
  9. 9.
    Spyros A, Dais P. Application of 31P NMR spectroscopy in food analysis. 1. Quantitative determination of the mono- and diglyceride composition of olive oils. J Agric Food Chem. 2000;48(3):802–5.CrossRefGoogle Scholar
  10. 10.
    Christophoridou S, Dais P. Novel approach to the detection and quantification of phenolic compounds in olive oil based on 31P nuclear magnetic resonance spectroscopy. J Agric Food Chem. 2006;54(3):656–64.CrossRefGoogle Scholar
  11. 11.
    Fronimaki P, Spyros A, Christophoridou S, Dais P. Determination of the diglyceride content in Greek virgin olive oils and some commercial olive oils by employing 31P NMR spectroscopy. J Agric Food Chem. 2002;50(8):2207–13.CrossRefGoogle Scholar
  12. 12.
    Vigli G, Philippidis A, Spyros A, Dais P. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils. J Agric Food Chem. 2003;51(19):5715–22.CrossRefGoogle Scholar
  13. 13.
    Dayrit FM, Buenafe OEM, Chainani ET, De Vera IMS. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L) oil by 31P NMR spectroscopy. J Agric Food Chem. 2008;56(14):5765–9.CrossRefGoogle Scholar
  14. 14.
    Dais P, Spyros A, Christophoridou S, Hatzakis E, Fragaki G, Agiomyrgianaki A, et al. Comparison of analytical methodologies based on 1H and 31P NMR spectroscopy with conventional methods of analysis for the determination of some olive oil constituents. J Agric Food Chem. 2007;55(3):577–84.CrossRefGoogle Scholar
  15. 15.
    Dais P, Spyros A. 31P NMR spectroscopy in the quality control and authentication of extra-virgin olive oil: a review of recent progress. Magn Reson Chem. 2007;45(5):367–77.CrossRefGoogle Scholar
  16. 16.
    Fragaki G, Spyros A, Siragakis G, Salivaras E, Dais P. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis. J Agric Food Chem. 2005;53(8):2810–6.CrossRefGoogle Scholar
  17. 17.
    Petrakis PV, Agiomyrgianaki A, Christophoridou S, Spyros A, Dais P. Geographical characterization of Greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical discriminant analysis and classification binary trees. J Agric Food Chem. 2008;56(9):3200–7.CrossRefGoogle Scholar
  18. 18.
    Spyros A, Philippidis A, Dais P. Kinetics of diglyceride formation and isomerization in virgin olive oils by employing 31P NMR spectroscopy. Formulation of a quantitative measure to assess olive oil storage history. J Agric Food Chem. 2004;52(2):157–64.CrossRefGoogle Scholar
  19. 19.
    Dayrit FM, Dimzon IKD, Valde MF, Santos JER, Garrovillas MJM, Villarino BJ. Quality characteristics of virgin coconut oil: comparisons with refined coconut oil. Pure Appl Chem. 2011;83(9):1789–99.CrossRefGoogle Scholar
  20. 20.
    Hatzakis E, Dais P. Determination of water content in olive oil by 31P NMR spectroscopy. J Agric Food Chem. 2008;56(6):1866–72.CrossRefGoogle Scholar
  21. 21.
    Hatzakis E, Agiomyrgianaki A, Dais P. Detection and quantification of free glycerol in virgin olive oil by 31P-NMR spectroscopy. JAOCS, J Am Oil Chem Soc. 2010;87(1):29–34.CrossRefGoogle Scholar
  22. 22.
    Hatzakis E, Archavlis E, Dais P. Determination of glycerol in wines using 31P-NMR spectroscopy. JAOCS, J Am Oil Chem Soc. 2007;84(7):615–9.CrossRefGoogle Scholar
  23. 23.
    Hatzakis E, Dagounakis G, Agiomyrgianaki A, Dais P. A facile NMR method for the quantification of total, free and esterified sterols in virgin olive oil. Food Chem. 2010;122(1):346–52.CrossRefGoogle Scholar
  24. 24.
    Dais P, Misiak M, Hatzakis E. Analysis of marine dietary supplements using NMR spectroscopy. Anal Methods. 2015;7(12):5226–38.CrossRefGoogle Scholar
  25. 25.
    Christophoridou S, Spyros A, Dais P. 31P nuclear magnetic resonance spectroscopy of polyphenol-containing olive oil model compounds. Phosphorus Sulfur Silicon Relat Elem. 2001;170:139–57.CrossRefGoogle Scholar
  26. 26.
    Agiomyrgianaki A, Petrakis PV, Dais P. Influence of harvest year, cultivar and geographical origin on Greek extra virgin olive oils composition: a study by NMR spectroscopy and biometric analysis. Food Chem. 2012;135(4):2561–8.CrossRefGoogle Scholar
  27. 27.
    Agiomyrgianaki A, Petrakis PV, Dais P. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis. Talanta. 2010;80(5):2165–71.CrossRefGoogle Scholar
  28. 28.
    Agiomyrgianaki A, Dais P. Simultaneous determination of phenolic compounds and triterpenic acids in oregano growing wild in Greece by 31P NMR spectroscopy. Magn Reson Chem. 2012;50(11):739–48.CrossRefGoogle Scholar
  29. 29.
    Dais P, Plessel R, Williamson K, Hatzakis E. Complete1H and13C NMR assignment and31P NMR determination of pentacyclic triterpenic acids. Anal Methods. 2017;9(6):949–57.CrossRefGoogle Scholar
  30. 30.
    Melone F, Saladino R, Lange H, Crestini C. Tannin structural elucidation and quantitative 31P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins. J Agric Food Chem. 2013;61(39):9316–24.CrossRefGoogle Scholar
  31. 31.
    Crestini C, Lange H, Bianchetti G. Detailed chemical composition of condensed tannins via quantitative 31P NMR and HSQC analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii. J Nat Prod. 2016;79(9):2287–95.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NMR Laboratory, Chemistry DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations