Skip to main content

NMR Diffusometry

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Over the last several decades NMR diffusion measurements have evolved into an ever more powerful suite of tools for non-invasively studying translational dynamics. Most modern spectrometers are now capable of performing standard NMR diffusion measurements. The information content available ranges from estimates of translational diffusion in free solution from which solution structure and molecular size can be studied, to information on characteristic distances when the motion occurs within restricted systems. When coupled with electric field pulses it is possible to measure electrophoretic mobility. Thus, it is now possible to separate the resonances from a sample containing a mixture of species on the basis of size or charge. Experimental and theoretical advances in NMR diffusometry have increased the accuracy, information content and range of applicable systems including clinical applications. This chapter touches upon all of these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–94.

    Article  Google Scholar 

  2. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    Article  CAS  Google Scholar 

  3. Stilbs P. Historical: early multi-component FT-PGSE NMR self-diffusion measurements – some personal reflections. Magn Reson Chem. 2017. https://doi.org/10.1002/mrc.4365.

  4. Price WS. NMR diffusometry. In: Webb GA, editor. Modern magnetic resonance. 1 Berlin: Springer; 2006. p. 105–11.

    Google Scholar 

  5. Heink W, Kärger J, Pfeifer H. Application of zeugmatography to study kinetics of physical adsorption. Chem Eng Sci. 1978;33(8):1019–23.

    Article  CAS  Google Scholar 

  6. Balcom BJ, Fischer AE, Carpenter TA, Hall LD. Diffusion in aqueous gels. Mutual diffusion coefficients measured by one-dimensional nuclear magnetic resonance imaging. J Am Chem Soc. 1993;115(8):3300–5.

    Article  CAS  Google Scholar 

  7. Hertz HG. Translational motions as studied by nuclear magnetic resonance. In: Lascombe J, editor. Molecular motions in liquids. Dordrecht: Reidel; 1974. p. 337–57.

    Chapter  Google Scholar 

  8. Price WS, Perng B-C, Tsai C-L, Hwang L-P. Microviscosity of human erythrocytes studied using hypophosphite two-spin order relaxation. Biophys J. 1992;61(3):621–30.

    Article  CAS  Google Scholar 

  9. Kruk D, Meier R, Rössler EA. Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion coefficients in liquids. Phys Rev E. 2012;85:020201.

    Article  CAS  Google Scholar 

  10. Price WS. NMR studies of translational motion: principles and applications. Cambridge molecular science. 1st ed. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  11. Callaghan PT. Translational dynamics & magnetic resonance. 1st ed. Oxford: Oxford University Press; 2011.

    Book  Google Scholar 

  12. Weingärtner H. Self-diffusion in liquid water. A reassessment. Z Phys Chem. 1982;132:129–49.

    Article  Google Scholar 

  13. Sutherland W. A dynamical theory of diffusion for nonelectrolytes and the molecular mass of albumin. Philos Mag. 1905;S.6, 9:781–5.

    Article  Google Scholar 

  14. Sutherland W. Ionization, ionic velocities, and atomic sizes. Philos Mag. 1902;S.6, 3(14):161–77.

    Article  Google Scholar 

  15. Einstein A. Investigations on the theory of Brownian movement. 1st ed. New York: Dover; 1956.

    Google Scholar 

  16. Evans R, Deng Z, Rogerson AK, McLachlan AS, Richards JJ, Nilsson M, Morris GA. Quantitative interpretation of diffusion-ordered NMR spectra: can we rationalize small molecule diffusion coefficients? Angew Chem Int Ed Engl. 2013;52(11):3199–202. https://doi.org/10.1002/anie.201207403.

    Article  CAS  Google Scholar 

  17. North AM. Diffusion-controlled reactions. Q Rev Chem Soc. 1966;20(3):421–40. https://doi.org/10.1039/QR9662000421.

    Article  CAS  Google Scholar 

  18. Mori S, Van Zijl PCM. Fiber tracking: principles and strategies – a technical review. NMR Biomed. 2002;15(7–8):468–80.

    Article  Google Scholar 

  19. Zheng G, Price WS. Direct hydrodynamic radius measurement on dissolved organic matter in natural waters using diffusion NMR. Environ Sci Technol. 2012;46(3):1675–80.

    Article  CAS  Google Scholar 

  20. Pelta MD, Morris GA, Stchedroff MJ, Hammond SJ. A one-shot sequence for high resolution diffusion ordered spectroscopy. Magn Reson Chem. 2002;40(13):S147–52.

    Article  CAS  Google Scholar 

  21. Colbourne AA, Morris GA, Nilsson M. Local covariance order diffusion-ordered spectroscopy: a powerful tool for mixture analysis. J Am Chem Soc. 2011;133(20):7640–3.

    Article  CAS  Google Scholar 

  22. Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, Price WS. Numerical analysis of NMR diffusion measurements in the short gradient pulse limit. J Magn Reson. 2014;234:165–75.

    Article  CAS  Google Scholar 

  23. Fieremans E, De Deene Y, Delputte S, Özdemir MS, D’Asseler Y, Vlassenbroeck J, Deblaere K, Achten E, Lemahieu I. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008;190(2):189–99. https://doi.org/10.1016/j.jmr.2007.10.014.

    Article  CAS  Google Scholar 

  24. Nordin M, Grebenkov D, Nilsson Jacobi M, Nydén M. An efficient eigenfunction approach to calculate spin-echo signals in heterogeneous porous media. Micropor Mesopor Mater. 2013;178:7–10.

    Article  CAS  Google Scholar 

  25. Grebenkov DS, Nguyen HT, Li J-R. A fast random walk algorithm for computing diffusion-weighted NMR signals in multi-scale porous media: a feasibility study for a Menger sponge. Micropor Mesopor Mater. 2013;178:56–9.

    Article  CAS  Google Scholar 

  26. Ghadirian B, Torres AM, Yadav NN, Price WS. Restricted diffusion in annular geometrical pores. J Chem Phys. 2013;138(9):094202–094201-094202-094211.

    Article  CAS  Google Scholar 

  27. Åslund I, Topgaard D. Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. J Magn Reson. 2009;201(2):250–4.

    Article  CAS  Google Scholar 

  28. Eriksson S, Lasič S, Topgaard D. Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. J Magn Reson. 2013;226:13–8. https://doi.org/10.1016/j.jmr.2012.10.015.

    Article  CAS  Google Scholar 

  29. Topgaard D. Multidimensional diffusion MRI. J Magn Reson. 2017;275:98–113. https://doi.org/10.1016/j.jmr.2016.12.007.

    Article  CAS  Google Scholar 

  30. Weingärtner H. Diffusion in liquid mixtures of light and heavy water. Ber Bunsen Phys Chem. 1984;88(1):47–50.

    Article  Google Scholar 

  31. Harris KR, Ganbold B, Price WS. Viscous calibration liquids for self-diffusion measurements. J Chem Eng Data. 2015;60(12):3506–17.

    Article  CAS  Google Scholar 

  32. Holz M, Weingärtner H. Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei. J Magn Reson. 1991;92(1):115–25.

    CAS  Google Scholar 

  33. Yadav NN, Torres AM, Price WS. An improved approach to calibrating high magnetic field gradients for pulsed field gradient experiments. J Magn Reson. 2008;194(1):25–8.

    Article  CAS  Google Scholar 

  34. Swan I, Reid M, Howe PWA, Connell MA, Nilsson M, Moore MA, Morris GA. Sample convection in liquid-state NMR: Why it is always with us, and what we can do about it. J Magn Reson. 2015;252:120–9.

    Article  CAS  Google Scholar 

  35. Barbosa TM, Rittner R, Tormena CF, Morris GA, Nilsson M. Convection in liquid-state NMR: expect the unexpected. RSC Adv. 2016;6(97):95173–6. https://doi.org/10.1039/c6ra23427e.

    Article  CAS  Google Scholar 

  36. Kiraly P, Swan I, Nilsson M, Morris GA. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients. J Magn Reson. 2016;270:24–30. https://doi.org/10.1016/j.jmr.2016.06.011.

    Article  CAS  Google Scholar 

  37. Evans R, Haiber S, Nilsson M, Morris GA. Isomer resolution by micelle-assisted diffusion-ordered spectroscopy. Anal Chem. 2009;81(11):4548–50.

    Article  CAS  Google Scholar 

  38. Codling DJ, Zheng G, Stait-Gardner T, Yang S, Nilsson M, Price WS. Diffusion studies of dihydroxybenzene isomers in water-alcohol systems. J Phys Chem B. 2013;117(9):2734–41.

    Article  CAS  Google Scholar 

  39. Cassani J, Nilsson M, Morris GA. Flavonoid mixture analysis by matrix-assisted diffusion-ordered spectroscopy. J Nat Prod. 2012;75(2):131–4.

    Article  CAS  Google Scholar 

  40. Rogerson AK, Aguilar JA, Nilsson M, Morris GA. Simultaneous enhancement of chemical shift dispersion and diffusion resolution in mixture analysis by diffusion-ordered NMR spectroscopy. Chem Commun. 2011;47:7063–4.

    Article  CAS  Google Scholar 

  41. Torres AM, Dela Cruz R, Price WS. Removal of J-coupling peak distortion in PGSE experiments. J Magn Reson. 2008;193(2):311–6.

    Article  CAS  Google Scholar 

  42. Torres AM, Zheng G, Price WS. J-Compensated PGSE: an improved NMR diffusion experiment with fewer phase distortions. Magn Reson Chem. 2010;48(2):129–33.

    CAS  Google Scholar 

  43. Aguilar JA, Faulkner S, Nilsson M, Morris GA. Pure shift 1H NMR: a resolution of the resolution problem? Angew Chem Int Ed. 2010;49(23):3901–3.

    Article  CAS  Google Scholar 

  44. Foroozandeh M, Castañar L, Martins LG, Sinnaeve D, Poggetto GD, Tormena CF, Adams RW, Morris GA, Nilsson M. Ultrahigh-resolution diffusion-ordered spectroscopy. Angew Chem Int Ed Engl. 2016;55(50):15579–82. https://doi.org/10.1002/anie.201609676.

    Article  CAS  Google Scholar 

  45. Heil SR, Holz M. A mobility filter for the detection and identification of charged species in complex liquid mixtures by ENMR phase difference spectroscopy. Angew Chem Int Ed Engl. 1996;35(15):1717–20.

    Article  CAS  Google Scholar 

  46. Bielejewski M, Giesecke M, Furó I. On electrophoretic NMR. Exploring high conductivity samples. J Magn Reson. 2014;243:17–24. https://doi.org/10.1016/j.jmr.2014.03.005.

    Article  CAS  Google Scholar 

  47. Packer KJ. The study of slow coherent molecular motion by pulsed nuclear magnetic resonance. Mol Phys. 1969;17(4):355–68.

    Article  CAS  Google Scholar 

  48. Holz M, Müller C. Direct measurement of single ionic drift velocities in electrolyte Solutions. An NMR method. Ber Bunsen Phys Chem. 1982;86:141–7.

    Article  CAS  Google Scholar 

  49. Holz M. NMR in the presence of an electric current. Simultaneous measurements of ionic mobilities, transference numbers, and self-diffusion coefficients using an NMR pulsed-gradient experiment. J Magn Reson. 1984;58(2):294–305.

    CAS  Google Scholar 

  50. Holz M. Field-assisted diffusion studied by electrophoretic NMR. In: Kärger J, Heitjans P, editors. Diffusion in condensed matter. Berlin: Springer; 2005. p. 717–42.

    Chapter  Google Scholar 

  51. Griffiths PC, Paul A, Hirst N. Electrophoretic NMR studies of polymer and surfactant systems. Chem Soc Rev. 2006;35:134–45.

    Article  CAS  Google Scholar 

  52. Pettersson E, Furó I, Stilbs P. On experimental aspects of electrophoretic NMR. Conc Magn Reson A. 2004;22(2):61–8.

    Article  CAS  Google Scholar 

  53. Johnson Jr CS. Electrophoretic NMR. In: Grant DM, Harris RK, editors. Encyclopedia of nuclear magnetic resonance. 3 New York: Wiley; 1996. p. 1886–95.

    Google Scholar 

  54. Li E, He Q. Constant-time multidimensional electrophoretic NMR. J Magn Reson. 2002;156(2):181–6.

    Article  CAS  Google Scholar 

  55. Hayamizu K, Aihara Y. Correlating the ionic drift under Pt/Pt electrodes for ionic liquids measured by low-voltage electrophoretic NMR with chronoamperometry. J Phys Chem Lett. 2010;1:2055–8.

    Article  CAS  Google Scholar 

  56. Zhang Z, Madsen LA. Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids. J Chem Phys. 2014;140(8):084204.

    Article  CAS  Google Scholar 

  57. Giesecke M, Meriguet G, Hallberg F, Fang Y, Stilbs P, Furó I. Ion association in aqueous and non-aqueous solutions probed by diffusion and electrophoretic NMR. Phys Chem Chem Phys. 2015;17:3402–8.

    Article  CAS  Google Scholar 

  58. Hallberg F, Vernersson T, Pettersson ET, Dvinskikh SV, Lindbergh G, Furó I. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy. Electrochim Acta. 2010;55(10):3542–9.

    Article  CAS  Google Scholar 

  59. van Gelderen P, Olson A, Moonen CTW. A single-shot diffusion experiment. J Magn Reson A. 1993;103(1):105–8.

    Article  Google Scholar 

  60. Doran SJ, Décorps M. A robust, single-shot method for measuring diffusion coefficients using the “Burst” sequence. J Magn Reson A. 1995;117(2):311–6.

    Article  CAS  Google Scholar 

  61. Velan SS, Chandrakumar N. High-resolution NMR measurement of molecular self-diffusion by fast multi-spin-echo diffusion studies. J Magn Reson A. 1996;123(1):122–5.

    Article  CAS  Google Scholar 

  62. Peled S, Tseng C-H, Sodickson A, Mair RW, Walsworth RL, Cory DG. Single-shot diffusion measurement in laser-polarized gas. J Magn Reson. 1999;140(2):320–4.

    Article  CAS  Google Scholar 

  63. Stamps JP, Ottink B, Visser JM, van Duynhoven JPM, Hulst R. Difftrain: a novel approach to a true spectroscopic single-scan diffusion measurement. J Magn Reson. 2001;151(1):28–31.

    Article  CAS  Google Scholar 

  64. Buckley C, Hollingsworth CA, Sederman AJ, Holland DJ, Johns ML, Gladden LF. Applications of fast diffusion measurement using Difftrain. J Magn Reson. 2003;161(2):112–7.

    Article  CAS  Google Scholar 

  65. Thrippleton MJ, Loening NM, Keeler J. A fast method for the measurement of diffusion coefficients: one-dimensional DOSY. Magn Reson Chem. 2003;41(6):441–7.

    Article  CAS  Google Scholar 

  66. Kittler WC, Obruchkov S, Galvosas P, Hunter MW. Pulsed second order field NMR for real time PGSE and single-shot surface to volume ratio measurements. J Magn Reson. 2014;247:42–9.

    Article  CAS  Google Scholar 

  67. Loening NM, Keeler J, Morris GA. One-dimensional DOSY. J Magn Reson. 2001;153(1):103–12.

    Article  CAS  Google Scholar 

  68. Stait-Gardner T, Anil Kumar PG, Price WS. Steady state effects in PGSE NMR diffusion experiments. Chem Phys Lett. 2008;462(4–6):331–6.

    Article  CAS  Google Scholar 

  69. Zubkov M, Stait-Gardner T, Price WS, Stilbs P. Steady state effects in a two-pulse diffusion-weighted sequence. J Chem Phys. 2015;142(15):154201.

    Article  CAS  Google Scholar 

  70. Carravetta M, Johanneson OG, Levitt MH. Beyond the T1 limit: singlet nuclear spin states in low magnetic fields. Phys Rev Lett. 2004;92(15):153003.

    Article  CAS  Google Scholar 

  71. Carravetta M, Levitt MH. Long-lived nuclear spin states in high-field solution NMR. J Am Chem Soc. 2004;126(20):6228–9.

    Article  CAS  Google Scholar 

  72. Pileio G, Levitt MH. Isotropic filtering using polyhedral phase cycles: application to singlet state NMR. J Magn Reson. 2008;191(1):148–55. https://doi.org/10.1016/j.jmr.2007.11.021.

    Article  CAS  Google Scholar 

  73. Torres AM, Ghadirian B, Price WS. Diffusion-diffraction using singlet spin states and various NMR coherences in a J-coupled AX spin system. RSC Adv. 2012;2:3352–60.

    Article  CAS  Google Scholar 

  74. Yadav NN, Torres AM, Price WS. NMR q-space imaging of macroscopic pores using singlet spin states. J Magn Reson. 2010;204(2):346–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Price, W.S. (2018). NMR Diffusometry. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_67

Download citation

Publish with us

Policies and ethics