NMR Diffusometry

Reference work entry

Abstract

Over the last several decades NMR diffusion measurements have evolved into an ever more powerful suite of tools for non-invasively studying translational dynamics. Most modern spectrometers are now capable of performing standard NMR diffusion measurements. The information content available ranges from estimates of translational diffusion in free solution from which solution structure and molecular size can be studied, to information on characteristic distances when the motion occurs within restricted systems. When coupled with electric field pulses it is possible to measure electrophoretic mobility. Thus, it is now possible to separate the resonances from a sample containing a mixture of species on the basis of size or charge. Experimental and theoretical advances in NMR diffusometry have increased the accuracy, information content and range of applicable systems including clinical applications. This chapter touches upon all of these issues.

Keywords

Diffusion DOSY Electrophoretic NMR PGSE NMR Restricted diffusion 

References

  1. 1.
    Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–94.CrossRefGoogle Scholar
  2. 2.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.CrossRefGoogle Scholar
  3. 3.
    Stilbs P. Historical: early multi-component FT-PGSE NMR self-diffusion measurements – some personal reflections. Magn Reson Chem. 2017.  https://doi.org/10.1002/mrc.4365.
  4. 4.
    Price WS. NMR diffusometry. In: Webb GA, editor. Modern magnetic resonance. 1 Berlin: Springer; 2006. p. 105–11.Google Scholar
  5. 5.
    Heink W, Kärger J, Pfeifer H. Application of zeugmatography to study kinetics of physical adsorption. Chem Eng Sci. 1978;33(8):1019–23.CrossRefGoogle Scholar
  6. 6.
    Balcom BJ, Fischer AE, Carpenter TA, Hall LD. Diffusion in aqueous gels. Mutual diffusion coefficients measured by one-dimensional nuclear magnetic resonance imaging. J Am Chem Soc. 1993;115(8):3300–5.CrossRefGoogle Scholar
  7. 7.
    Hertz HG. Translational motions as studied by nuclear magnetic resonance. In: Lascombe J, editor. Molecular motions in liquids. Dordrecht: Reidel; 1974. p. 337–57.CrossRefGoogle Scholar
  8. 8.
    Price WS, Perng B-C, Tsai C-L, Hwang L-P. Microviscosity of human erythrocytes studied using hypophosphite two-spin order relaxation. Biophys J. 1992;61(3):621–30.CrossRefGoogle Scholar
  9. 9.
    Kruk D, Meier R, Rössler EA. Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion coefficients in liquids. Phys Rev E. 2012;85:020201.CrossRefGoogle Scholar
  10. 10.
    Price WS. NMR studies of translational motion: principles and applications. Cambridge molecular science. 1st ed. Cambridge: Cambridge University Press; 2009.CrossRefGoogle Scholar
  11. 11.
    Callaghan PT. Translational dynamics & magnetic resonance. 1st ed. Oxford: Oxford University Press; 2011.CrossRefGoogle Scholar
  12. 12.
    Weingärtner H. Self-diffusion in liquid water. A reassessment. Z Phys Chem. 1982;132:129–49.CrossRefGoogle Scholar
  13. 13.
    Sutherland W. A dynamical theory of diffusion for nonelectrolytes and the molecular mass of albumin. Philos Mag. 1905;S.6, 9:781–5.CrossRefGoogle Scholar
  14. 14.
    Sutherland W. Ionization, ionic velocities, and atomic sizes. Philos Mag. 1902;S.6, 3(14):161–77.CrossRefGoogle Scholar
  15. 15.
    Einstein A. Investigations on the theory of Brownian movement. 1st ed. New York: Dover; 1956.Google Scholar
  16. 16.
    Evans R, Deng Z, Rogerson AK, McLachlan AS, Richards JJ, Nilsson M, Morris GA. Quantitative interpretation of diffusion-ordered NMR spectra: can we rationalize small molecule diffusion coefficients? Angew Chem Int Ed Engl. 2013;52(11):3199–202.  https://doi.org/10.1002/anie.201207403.CrossRefGoogle Scholar
  17. 17.
    North AM. Diffusion-controlled reactions. Q Rev Chem Soc. 1966;20(3):421–40.  https://doi.org/10.1039/QR9662000421.CrossRefGoogle Scholar
  18. 18.
    Mori S, Van Zijl PCM. Fiber tracking: principles and strategies – a technical review. NMR Biomed. 2002;15(7–8):468–80.CrossRefGoogle Scholar
  19. 19.
    Zheng G, Price WS. Direct hydrodynamic radius measurement on dissolved organic matter in natural waters using diffusion NMR. Environ Sci Technol. 2012;46(3):1675–80.CrossRefGoogle Scholar
  20. 20.
    Pelta MD, Morris GA, Stchedroff MJ, Hammond SJ. A one-shot sequence for high resolution diffusion ordered spectroscopy. Magn Reson Chem. 2002;40(13):S147–52.CrossRefGoogle Scholar
  21. 21.
    Colbourne AA, Morris GA, Nilsson M. Local covariance order diffusion-ordered spectroscopy: a powerful tool for mixture analysis. J Am Chem Soc. 2011;133(20):7640–3.CrossRefGoogle Scholar
  22. 22.
    Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, Price WS. Numerical analysis of NMR diffusion measurements in the short gradient pulse limit. J Magn Reson. 2014;234:165–75.CrossRefGoogle Scholar
  23. 23.
    Fieremans E, De Deene Y, Delputte S, Özdemir MS, D’Asseler Y, Vlassenbroeck J, Deblaere K, Achten E, Lemahieu I. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008;190(2):189–99.  https://doi.org/10.1016/j.jmr.2007.10.014.CrossRefGoogle Scholar
  24. 24.
    Nordin M, Grebenkov D, Nilsson Jacobi M, Nydén M. An efficient eigenfunction approach to calculate spin-echo signals in heterogeneous porous media. Micropor Mesopor Mater. 2013;178:7–10.CrossRefGoogle Scholar
  25. 25.
    Grebenkov DS, Nguyen HT, Li J-R. A fast random walk algorithm for computing diffusion-weighted NMR signals in multi-scale porous media: a feasibility study for a Menger sponge. Micropor Mesopor Mater. 2013;178:56–9.CrossRefGoogle Scholar
  26. 26.
    Ghadirian B, Torres AM, Yadav NN, Price WS. Restricted diffusion in annular geometrical pores. J Chem Phys. 2013;138(9):094202–094201-094202-094211.CrossRefGoogle Scholar
  27. 27.
    Åslund I, Topgaard D. Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. J Magn Reson. 2009;201(2):250–4.CrossRefGoogle Scholar
  28. 28.
    Eriksson S, Lasič S, Topgaard D. Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. J Magn Reson. 2013;226:13–8.  https://doi.org/10.1016/j.jmr.2012.10.015.CrossRefGoogle Scholar
  29. 29.
    Topgaard D. Multidimensional diffusion MRI. J Magn Reson. 2017;275:98–113.  https://doi.org/10.1016/j.jmr.2016.12.007.CrossRefGoogle Scholar
  30. 30.
    Weingärtner H. Diffusion in liquid mixtures of light and heavy water. Ber Bunsen Phys Chem. 1984;88(1):47–50.CrossRefGoogle Scholar
  31. 31.
    Harris KR, Ganbold B, Price WS. Viscous calibration liquids for self-diffusion measurements. J Chem Eng Data. 2015;60(12):3506–17.CrossRefGoogle Scholar
  32. 32.
    Holz M, Weingärtner H. Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei. J Magn Reson. 1991;92(1):115–25.Google Scholar
  33. 33.
    Yadav NN, Torres AM, Price WS. An improved approach to calibrating high magnetic field gradients for pulsed field gradient experiments. J Magn Reson. 2008;194(1):25–8.CrossRefGoogle Scholar
  34. 34.
    Swan I, Reid M, Howe PWA, Connell MA, Nilsson M, Moore MA, Morris GA. Sample convection in liquid-state NMR: Why it is always with us, and what we can do about it. J Magn Reson. 2015;252:120–9.CrossRefGoogle Scholar
  35. 35.
    Barbosa TM, Rittner R, Tormena CF, Morris GA, Nilsson M. Convection in liquid-state NMR: expect the unexpected. RSC Adv. 2016;6(97):95173–6.  https://doi.org/10.1039/c6ra23427e.CrossRefGoogle Scholar
  36. 36.
    Kiraly P, Swan I, Nilsson M, Morris GA. Improving accuracy in DOSY and diffusion measurements using triaxial field gradients. J Magn Reson. 2016;270:24–30.  https://doi.org/10.1016/j.jmr.2016.06.011.CrossRefGoogle Scholar
  37. 37.
    Evans R, Haiber S, Nilsson M, Morris GA. Isomer resolution by micelle-assisted diffusion-ordered spectroscopy. Anal Chem. 2009;81(11):4548–50.CrossRefGoogle Scholar
  38. 38.
    Codling DJ, Zheng G, Stait-Gardner T, Yang S, Nilsson M, Price WS. Diffusion studies of dihydroxybenzene isomers in water-alcohol systems. J Phys Chem B. 2013;117(9):2734–41.CrossRefGoogle Scholar
  39. 39.
    Cassani J, Nilsson M, Morris GA. Flavonoid mixture analysis by matrix-assisted diffusion-ordered spectroscopy. J Nat Prod. 2012;75(2):131–4.CrossRefGoogle Scholar
  40. 40.
    Rogerson AK, Aguilar JA, Nilsson M, Morris GA. Simultaneous enhancement of chemical shift dispersion and diffusion resolution in mixture analysis by diffusion-ordered NMR spectroscopy. Chem Commun. 2011;47:7063–4.CrossRefGoogle Scholar
  41. 41.
    Torres AM, Dela Cruz R, Price WS. Removal of J-coupling peak distortion in PGSE experiments. J Magn Reson. 2008;193(2):311–6.CrossRefGoogle Scholar
  42. 42.
    Torres AM, Zheng G, Price WS. J-Compensated PGSE: an improved NMR diffusion experiment with fewer phase distortions. Magn Reson Chem. 2010;48(2):129–33.Google Scholar
  43. 43.
    Aguilar JA, Faulkner S, Nilsson M, Morris GA. Pure shift 1H NMR: a resolution of the resolution problem? Angew Chem Int Ed. 2010;49(23):3901–3.CrossRefGoogle Scholar
  44. 44.
    Foroozandeh M, Castañar L, Martins LG, Sinnaeve D, Poggetto GD, Tormena CF, Adams RW, Morris GA, Nilsson M. Ultrahigh-resolution diffusion-ordered spectroscopy. Angew Chem Int Ed Engl. 2016;55(50):15579–82.  https://doi.org/10.1002/anie.201609676.CrossRefGoogle Scholar
  45. 45.
    Heil SR, Holz M. A mobility filter for the detection and identification of charged species in complex liquid mixtures by ENMR phase difference spectroscopy. Angew Chem Int Ed Engl. 1996;35(15):1717–20.CrossRefGoogle Scholar
  46. 46.
    Bielejewski M, Giesecke M, Furó I. On electrophoretic NMR. Exploring high conductivity samples. J Magn Reson. 2014;243:17–24.  https://doi.org/10.1016/j.jmr.2014.03.005.CrossRefGoogle Scholar
  47. 47.
    Packer KJ. The study of slow coherent molecular motion by pulsed nuclear magnetic resonance. Mol Phys. 1969;17(4):355–68.CrossRefGoogle Scholar
  48. 48.
    Holz M, Müller C. Direct measurement of single ionic drift velocities in electrolyte Solutions. An NMR method. Ber Bunsen Phys Chem. 1982;86:141–7.CrossRefGoogle Scholar
  49. 49.
    Holz M. NMR in the presence of an electric current. Simultaneous measurements of ionic mobilities, transference numbers, and self-diffusion coefficients using an NMR pulsed-gradient experiment. J Magn Reson. 1984;58(2):294–305.Google Scholar
  50. 50.
    Holz M. Field-assisted diffusion studied by electrophoretic NMR. In: Kärger J, Heitjans P, editors. Diffusion in condensed matter. Berlin: Springer; 2005. p. 717–42.CrossRefGoogle Scholar
  51. 51.
    Griffiths PC, Paul A, Hirst N. Electrophoretic NMR studies of polymer and surfactant systems. Chem Soc Rev. 2006;35:134–45.CrossRefGoogle Scholar
  52. 52.
    Pettersson E, Furó I, Stilbs P. On experimental aspects of electrophoretic NMR. Conc Magn Reson A. 2004;22(2):61–8.CrossRefGoogle Scholar
  53. 53.
    Johnson Jr CS. Electrophoretic NMR. In: Grant DM, Harris RK, editors. Encyclopedia of nuclear magnetic resonance. 3 New York: Wiley; 1996. p. 1886–95.Google Scholar
  54. 54.
    Li E, He Q. Constant-time multidimensional electrophoretic NMR. J Magn Reson. 2002;156(2):181–6.CrossRefGoogle Scholar
  55. 55.
    Hayamizu K, Aihara Y. Correlating the ionic drift under Pt/Pt electrodes for ionic liquids measured by low-voltage electrophoretic NMR with chronoamperometry. J Phys Chem Lett. 2010;1:2055–8.CrossRefGoogle Scholar
  56. 56.
    Zhang Z, Madsen LA. Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids. J Chem Phys. 2014;140(8):084204.CrossRefGoogle Scholar
  57. 57.
    Giesecke M, Meriguet G, Hallberg F, Fang Y, Stilbs P, Furó I. Ion association in aqueous and non-aqueous solutions probed by diffusion and electrophoretic NMR. Phys Chem Chem Phys. 2015;17:3402–8.CrossRefGoogle Scholar
  58. 58.
    Hallberg F, Vernersson T, Pettersson ET, Dvinskikh SV, Lindbergh G, Furó I. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy. Electrochim Acta. 2010;55(10):3542–9.CrossRefGoogle Scholar
  59. 59.
    van Gelderen P, Olson A, Moonen CTW. A single-shot diffusion experiment. J Magn Reson A. 1993;103(1):105–8.CrossRefGoogle Scholar
  60. 60.
    Doran SJ, Décorps M. A robust, single-shot method for measuring diffusion coefficients using the “Burst” sequence. J Magn Reson A. 1995;117(2):311–6.CrossRefGoogle Scholar
  61. 61.
    Velan SS, Chandrakumar N. High-resolution NMR measurement of molecular self-diffusion by fast multi-spin-echo diffusion studies. J Magn Reson A. 1996;123(1):122–5.CrossRefGoogle Scholar
  62. 62.
    Peled S, Tseng C-H, Sodickson A, Mair RW, Walsworth RL, Cory DG. Single-shot diffusion measurement in laser-polarized gas. J Magn Reson. 1999;140(2):320–4.CrossRefGoogle Scholar
  63. 63.
    Stamps JP, Ottink B, Visser JM, van Duynhoven JPM, Hulst R. Difftrain: a novel approach to a true spectroscopic single-scan diffusion measurement. J Magn Reson. 2001;151(1):28–31.CrossRefGoogle Scholar
  64. 64.
    Buckley C, Hollingsworth CA, Sederman AJ, Holland DJ, Johns ML, Gladden LF. Applications of fast diffusion measurement using Difftrain. J Magn Reson. 2003;161(2):112–7.CrossRefGoogle Scholar
  65. 65.
    Thrippleton MJ, Loening NM, Keeler J. A fast method for the measurement of diffusion coefficients: one-dimensional DOSY. Magn Reson Chem. 2003;41(6):441–7.CrossRefGoogle Scholar
  66. 66.
    Kittler WC, Obruchkov S, Galvosas P, Hunter MW. Pulsed second order field NMR for real time PGSE and single-shot surface to volume ratio measurements. J Magn Reson. 2014;247:42–9.CrossRefGoogle Scholar
  67. 67.
    Loening NM, Keeler J, Morris GA. One-dimensional DOSY. J Magn Reson. 2001;153(1):103–12.CrossRefGoogle Scholar
  68. 68.
    Stait-Gardner T, Anil Kumar PG, Price WS. Steady state effects in PGSE NMR diffusion experiments. Chem Phys Lett. 2008;462(4–6):331–6.CrossRefGoogle Scholar
  69. 69.
    Zubkov M, Stait-Gardner T, Price WS, Stilbs P. Steady state effects in a two-pulse diffusion-weighted sequence. J Chem Phys. 2015;142(15):154201.CrossRefGoogle Scholar
  70. 70.
    Carravetta M, Johanneson OG, Levitt MH. Beyond the T1 limit: singlet nuclear spin states in low magnetic fields. Phys Rev Lett. 2004;92(15):153003.CrossRefGoogle Scholar
  71. 71.
    Carravetta M, Levitt MH. Long-lived nuclear spin states in high-field solution NMR. J Am Chem Soc. 2004;126(20):6228–9.CrossRefGoogle Scholar
  72. 72.
    Pileio G, Levitt MH. Isotropic filtering using polyhedral phase cycles: application to singlet state NMR. J Magn Reson. 2008;191(1):148–55.  https://doi.org/10.1016/j.jmr.2007.11.021.CrossRefGoogle Scholar
  73. 73.
    Torres AM, Ghadirian B, Price WS. Diffusion-diffraction using singlet spin states and various NMR coherences in a J-coupled AX spin system. RSC Adv. 2012;2:3352–60.CrossRefGoogle Scholar
  74. 74.
    Yadav NN, Torres AM, Price WS. NMR q-space imaging of macroscopic pores using singlet spin states. J Magn Reson. 2010;204(2):346–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanoscale Organisation and Dynamics GroupWestern Sydney UniversityPenrithAustralia

Personalised recommendations