Advances in Solid-State NMR Studies of Microbial Rhodopsins

  • Vladimir LadizhanskyEmail author
Reference work entry


Microbial rhodopsins are membrane-embedded heptahelical proteins which are responsible for ion transport or signal transduction in cells. Whereas initial research focused on the four microbial rhodopsins found in Halobacterium Salinarium and related haloarchaea, many additional members have been recently discovered in eubacteria and eukarya, and their structures and functions have been extensively studied. Solid-state nuclear magnetic resonance (NMR) spectroscopy is unique among structural and biophysical methods in that it reports on a structure of a membrane protein in its native-like lipid-embedded state. Here we review the developments in solid-state NMR and highlight its recent contributions to the structural studies of microbial rhodopsins.


Seven-helical membrane proteins Microbial rhodopsins Protein structure Protein dynamics Oligomerization Ion transport Photosensors Bacteriorhodopsin Proteorhodopsin Sensory rhodopsin I Sensory rhodopsin II Anabaena sensory rhodopsin Channelrhodopsin Solid-state NMR Magic angle spinning Dynamic nuclear polarization 



This work was supported by NSERC Discovery grant to V.L. We thank Dr. M. Baldus for providing us with high-resolution figures for this review.



Anabaena Sensory Rhodopsin


Anabaena Sensory Rhodopsin Transducer




Channelrhodopsin 1


Channelrhodopsin 2








Green Proteorhodopsin


Magic Angle Spinning


Nuclear Magnetic Resonance


Paramagnetic Relaxation Enhancement


Sensory Rhodopsin I


Sensory Rhodopsin II




Solid-state NMR


Transferred Echo Double Resonance




  1. 1.
    Oesterhelt D, Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973;70:2853–7.CrossRefGoogle Scholar
  2. 2.
    Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 1977;78:237–43.CrossRefGoogle Scholar
  3. 3.
    Bogomolni RA, Spudich JL. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A. 1982;79:6250–4.CrossRefGoogle Scholar
  4. 4.
    Takahashi T, Tomioka H, Kamo N, Kobatake Y. A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium-halobium. FEMS Microbiol Lett. 1985;28:161–4.CrossRefGoogle Scholar
  5. 5.
    Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich S, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.CrossRefGoogle Scholar
  6. 6.
    Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. Proteorhodopsin phototrophy in the ocean. Nature. 2001;411:786–9.CrossRefGoogle Scholar
  7. 7.
    Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev. 2014;114:126–63.CrossRefGoogle Scholar
  8. 8.
    Brown LS. Eubacterial rhodopsins – unique photosensors and diverse ion pumps. Biochim Biophys Acta. 2014;1837:553–61.CrossRefGoogle Scholar
  9. 9.
    Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim Biophys Acta. 1837;2014:562–77.Google Scholar
  10. 10.
    Herzfeld J, Lansing JC. Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu Rev Biophys Biomol Struct. 2002;31:73–95.CrossRefGoogle Scholar
  11. 11.
    Saito H, Naito A. NMR studies on fully hydrated membrane proteins, with emphasis on bacteriorhodopsin as a typical and prototype membrane protein. Biochim Biophys Acta. 1768;2007:3145–61.Google Scholar
  12. 12.
    Zhou HX, Cross TA. Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys. 2013;42:361–92.CrossRefGoogle Scholar
  13. 13.
    Andrew ER, Bradbury A, Eades RG. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature. 1958;182:1659.CrossRefGoogle Scholar
  14. 14.
    Lowe IJ. Free induction decay of rotating solids. Phys Rev Lett. 1959;2:285.CrossRefGoogle Scholar
  15. 15.
    Griffin RG. Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol. 1998;5:508–12.CrossRefGoogle Scholar
  16. 16.
    Colombo MG, Meier BH, Ernst RR. Rotor-driven spin diffusion in natural-abundance C-13 spin systems. Chem Phys Lett. 1988;146:189–96.CrossRefGoogle Scholar
  17. 17.
    Raleigh DP, Levitt MH, Griffin RG. Rotational resonance in solid-state NMR. Chem Phys Lett. 1988;146:71–6.CrossRefGoogle Scholar
  18. 18.
    Bennett AE, Griffin RG, Vega S. Recoupling of homo- and heteronuclear dipolar interactions in rotating solids. In: Blumich B, editor. Solid state NMR IV: methods and applications of solid-state NMR. Berlin: Springer; 1994. p. 1–77.Google Scholar
  19. 19.
    Dusold S, Sebald A. Dipolar recoupling under magic-angle spinning conditions. Annu Rep NMR Spectrosc. 2000;41:185–264.CrossRefGoogle Scholar
  20. 20.
    Ladizhansky V. Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Solid State Nucl Magn Reson. 2009;36:119–28.CrossRefGoogle Scholar
  21. 21.
    Nielsen NC, Strasso LA, Nielsen AB. Dipolar recoupling. Top Curr Chem. 2012;306:1–45.Google Scholar
  22. 22.
    De Paepe G. Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu Rev Phys Chem. 2012;63:661–84.CrossRefGoogle Scholar
  23. 23.
    Tuzi S, Naito A, Saito H. C-13 NMR-study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-C-13]ala-labeled bacteriorhodopsin. Biochemistry. 1994;33:15046–52.CrossRefGoogle Scholar
  24. 24.
    Griffiths JM, Bennett AE, Engelhard M, Siebert F, Raap J, Lugtenburg J, Herzfeld J, Griffin RG. Structural investigation of the active site in bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton-pumping mechanism from solid state NMR. Biochemistry. 2000;39:362–71.CrossRefGoogle Scholar
  25. 25.
    Creuzet F, McDermott A, Gebhard R, van der Hoef K, Spijker-Assink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG. Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin. Science. 1991;251:783–6.CrossRefGoogle Scholar
  26. 26.
    Feng X, Lee YK, Sandstrom D, Eden M, Maisel H, Sebald A, Levitt MH. Direct determination of a molecular torsional angle by solid-state NMR. Chem Phys Lett. 1996;257:314–20.CrossRefGoogle Scholar
  27. 27.
    Feng X, Verdegem PJ, Eden M, Sandstrom D, Lee YK, Bovee-Geurts PH, de Grip WJ, Lugtenburg J, de Groot HJ, Levitt MH. Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J Biomol NMR. 2000;16:1–8.CrossRefGoogle Scholar
  28. 28.
    Feng X, Verdegem PJE, Lee YK, Sandstrom D, Eden M, BoveeGeurts P, deGrip WJ, Lugtenburg J, deGroot HJM, Levitt MH. Direct determination of a molecular torsional angle in the membrane protein rhodopsin by solid-state NMR. J Am Chem Soc. 1997;119:6853–7.CrossRefGoogle Scholar
  29. 29.
    Lansing JC, Hohwy M, Jaroniec CP, Creemers AF, Lugtenburg J, Herzfeld J, Griffin RG. Chromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR. Biochemistry. 2002;41:431–8.CrossRefGoogle Scholar
  30. 30.
    Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2015;112:9896–901.CrossRefGoogle Scholar
  31. 31.
    Tuzi S, Hasegawa J, Kawaminami R, Naito A, Saito H. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from C-13 NMR spectra of [3-C-13]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion. Biophys J. 2001;81:425–34.CrossRefGoogle Scholar
  32. 32.
    Tian C, Gao PF, Pinto LH, Lamb RA, Cross TA. Initial structural and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers. Protein Sci. 2003;12:2597–605.CrossRefGoogle Scholar
  33. 33.
    Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V. Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed Eng. 2011;50:1302–5.CrossRefGoogle Scholar
  34. 34.
    Harbison GS, Roberts JE, Herzfeld J, Griffin RG. Solid-state NMR detection of proton-exchange between the bacteriorhodopsin schiff-base and bulk water. J Am Chem Soc. 1988;110:7221–3.CrossRefGoogle Scholar
  35. 35.
    Reif B. Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson. 2012;216:1–12.CrossRefGoogle Scholar
  36. 36.
    Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B. Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Eng. 2011;50:4508–12.CrossRefGoogle Scholar
  37. 37.
    Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. NMR spectroscopic assignment of backbone and side-chain protons in fully protonated proteins: microcrystals, sedimented assemblies, and amyloid fibrils. Angew Chem Int Ed Eng. 2016;55:15504–9.CrossRefGoogle Scholar
  38. 38.
    Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG. Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science. 1997;276:930–2.CrossRefGoogle Scholar
  39. 39.
    Song CS, Hu KN, Joo CG, Swager TM, Griffin RG. TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J Am Chem Soc. 2006;128:11385–90.CrossRefGoogle Scholar
  40. 40.
    Sauvee C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed Eng. 2013;52:10858–61.CrossRefGoogle Scholar
  41. 41.
    Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2008;105:883–8.CrossRefGoogle Scholar
  42. 42.
    Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2009;106:9244–9.CrossRefGoogle Scholar
  43. 43.
    Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M, Diehl A, Geiger MA, Woodmansee D, Trauner D, Hegemann P, Oschkinat H, Hildebrandt P, Stehfest K. Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry. 2015;54:5389–400.CrossRefGoogle Scholar
  44. 44.
    Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C. Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR. J Am Chem Soc. 2015;137:9032–43.CrossRefGoogle Scholar
  45. 45.
    Engelhard M, Hess B, Emeis D, Metz G, Kreutz W, Siebert F. Magic angle sample spinning 13C nuclear magnetic resonance of isotopically labeled bacteriorhodopsin. Biochemistry. 1989;28:3967–75.CrossRefGoogle Scholar
  46. 46.
    Metz G, Siebert F, Engelhard M. Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state 13C CP-MAS NMR investigation. FEBS Lett. 1992;303:237–41.CrossRefGoogle Scholar
  47. 47.
    Lakshmi KV, Farrar MR, Raap J, Lugtenburg J, Griffin RG, Herzfeld J. Solid-state C-13-NMR and N-15-NMR investigations of the N intermediate of bacteriorhodopsin. Biochemistry. 1994;33:8853–7.CrossRefGoogle Scholar
  48. 48.
    Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJ, Lugtenburg J, Griffin RG, Herzfeld J. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry. 1998;37:8088–96.CrossRefGoogle Scholar
  49. 49.
    Lanyi JK, Schobert B. Structural changes in the L photointermediate of bacteriorhodopsin. J Mol Biol. 2007;365:1379–92.CrossRefGoogle Scholar
  50. 50.
    Beja O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature. 2002;415:630–3.CrossRefGoogle Scholar
  51. 51.
    Sabehi G, Massana R, Bielawski JP, Rosenberg M, Delong EF, Beja O. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ Microbiol. 2003;5:842–9.CrossRefGoogle Scholar
  52. 52.
    Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Beja O. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 2005;3:1409–17.CrossRefGoogle Scholar
  53. 53.
    de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. P Natl Acad Sci USA. 2003;100:12830–5.CrossRefGoogle Scholar
  54. 54.
    Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry. 2002;41:5348–58.CrossRefGoogle Scholar
  55. 55.
    Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL. His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J Biol Chem. 2009;284:2836–43.CrossRefGoogle Scholar
  56. 56.
    Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C. His75-Asp97 cluster in green proteorhodopsin. J Am Chem Soc. 2011;133:4645–54.CrossRefGoogle Scholar
  57. 57.
    Garczarek F, Brown LS, Lanyi JK, Gerwert K. Proton binding within a membrane protein by a protonated water cluster. P Natl Acad Sci USA. 2005;102:3633–8.CrossRefGoogle Scholar
  58. 58.
    Pfleger N, Worner AC, Yang J, Shastri S, Hellmich UA, Aslimovska L, Maier MS, Glaubitz C. Solid-state NMR and functional studies on proteorhodopsin. Biochim Biophys Acta. 2009;1787:697–705.CrossRefGoogle Scholar
  59. 59.
    Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V. Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump–structural insights. J Mol Biol. 2009;386:1078–93.CrossRefGoogle Scholar
  60. 60.
    Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V. Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta. 2009;1788:2563–74.CrossRefGoogle Scholar
  61. 61.
    Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V. Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc. 2011;133:17434–43.CrossRefGoogle Scholar
  62. 62.
    Heyn MP, Cherry RJ, Dencher NA. Lipid–protein interactions in bacteriorhodopsin – dimyristoylphosphatidylcholine vesicles. Biochemistry. 1981;20:840–9.CrossRefGoogle Scholar
  63. 63.
    Hoffmann J, Aslimovska L, Bamann C, Glaubitz C, Bamberg E, Brutschy B. Studying the stoichiometries of membrane proteins by mass spectrometry: microbial rhodopsins and a potassium ion channel. Phys Chem Chem Phys. 2010;12:3480–5.CrossRefGoogle Scholar
  64. 64.
    Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJ, Han S. Structural insight into proteorhodopsin oligomers. Biophys J. 2013;104:472–81.CrossRefGoogle Scholar
  65. 65.
    Edwards DT, Huber T, Hussain S, Stone KM, Kinnebrew M, Kaminker I, Matalon E, Sherwin MS, Goldfarb D, Han S. Determining the oligomeric structure of proteorhodopsin by Gd3+−based pulsed dipolar spectroscopy of multiple distances. Structure. 2014;22:1–10.CrossRefGoogle Scholar
  66. 66.
    Klyszejko AL, Shastri S, Mari SA, Grubmuller H, Muller DJ, Glaubitz C. Folding and assembly of proteorhodopsin. J Mol Biol. 2008;376:35–41.CrossRefGoogle Scholar
  67. 67.
    Wang N, Wang M, Gao Y, Ran T, Lan Y, Wang J, Xu L, Wang W. Crystallization and preliminary X-ray crystallographic analysis of a blue-light-absorbing proteorhodopsin. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68:281–3.CrossRefGoogle Scholar
  68. 68.
    Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, Luecke H. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr. 2013;69:1965–80.CrossRefGoogle Scholar
  69. 69.
    Hing AW, Vega S, Schaefer J. Transferred-echo double-resonance NMR. J Magn Reson. 1992;96:205–9.Google Scholar
  70. 70.
    Jaroniec CP, Filip C, Griffin RG. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids. J Am Chem Soc. 2002;124:10728–42.CrossRefGoogle Scholar
  71. 71.
    Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew Chem Int Ed Eng. 2014;53:6960–4.CrossRefGoogle Scholar
  72. 72.
    Tomonaga Y, Hidaka T, Kawamura I, Nishio T, Ohsawa K, Okitsu T, Wada A, Sudo Y, Kamo N, Ramamoorthy A, Naito A. An active photoreceptor intermediate revealed by in situ photoirradiated solid-state NMR spectroscopy. Biophys J. 2011;101:L50–2.CrossRefGoogle Scholar
  73. 73.
    Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature. 2002;419:484–7.CrossRefGoogle Scholar
  74. 74.
    Jung KH, Trivedi VD, Spudich JL. Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol. 2003;47:1513–22.CrossRefGoogle Scholar
  75. 75.
    Vogeley L, Trivedi VD, Sineshchekov OA, Spudich EN, Spudich JL, Luecke H. Crystal structure of the Anabaena sensory rhodopsin transducer. J Mol Biol. 2007;367:741–51.CrossRefGoogle Scholar
  76. 76.
    Kondoh M, Inoue K, Sasaki J, Spudich JL, Terazima M. Transient dissociation of the transducer protein from anabaena sensory rhodopsin concomitant with formation of the M state produced upon photoactivation. J Am Chem Soc. 2011;133:13406–12.CrossRefGoogle Scholar
  77. 77.
    Jung KH. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea Eubacteria and Eukarya. Photochem Photobiol. 2007;83:63–9.CrossRefGoogle Scholar
  78. 78.
    Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS. A eukaryotic-like interaction of soluble cyanobacterial sensory rhodopsin transducer with DNA. J Mol Biol. 2011;411:449–62.CrossRefGoogle Scholar
  79. 79.
    Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Science. 2004;306:1390–3.CrossRefGoogle Scholar
  80. 80.
    Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V. Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods. 2013;10:1007–12.CrossRefGoogle Scholar
  81. 81.
    Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V. Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys J. 2011;101:L23–5.CrossRefGoogle Scholar
  82. 82.
    Ward ME, Wang S, Munro RA, Ritz E, Hung I, Gor'kov PL, Jiang Y, Liang H, Brown LS, Ladizhansky V. In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Biophys J. 2015;108:1683–96.CrossRefGoogle Scholar
  83. 83.
    Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O. Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 2012;482:369–74.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Biophysics Interdepartmental GroupUniversity of GuelphGuelphCanada

Personalised recommendations