Skip to main content

NMR Screening of mSin3B Binding Compounds for the Interaction Inhibition with a Neural Repressor, NRSF/REST

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

A neuron-restrictive silencer factor (NRSF/REST) binds to neural restrictive silencing element found in almost all neuronal genes and recruits corepressors to inhibit the neuronal gene expression in non-neuronal cells and neuron progenitor cells. One of the corepressors, mSin3, contains four paired amphipathic helix (PAH) domains, PAH1–PAH4, and the PAH1 domain binds to the repressor domain of NRSF/REST. Dysregulation of NRSF/REST is related to severe neurological diseases, for example, Huntington’s disease, medulloblastoma, and neuropathic pains. Inhibitor compounds, which bind to the NRSF/REST binding site of the PAH1 domain and inhibit the binding of NRSF/REST, are likely drug candidates to recover from these severe neurological diseases. So far, the biochemical and cellular functions of several compounds have been examined related to diseases such as Huntington’s disease, partially based on the complex structure of the NRSF/REST repressor domain bound to the mSin3 PAH1 domain. To design rationally such inhibitor compounds, NMR is one of the most powerful methods. The binding abilities of some compounds to the PAH1 domain have been examined by NMR: saturation transfer difference (STD) and heteronuclear single quantum coherence (HSQC) experiments. Together with docking calculations using Haddock, NMR chemical shift perturbations suggest the binding modes of a few compounds to the PAH1 domain. NMR reveals that the binding compounds have some rotational isomers in their unbound states; however, Haddock shows that a few rotational isomers adopt fully the mSin3 binding pocket. Thus, NMR will be a key player to develop efficient compounds to recover from the severe neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995;267:1360–3.

    Article  CAS  Google Scholar 

  2. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.

    Article  CAS  Google Scholar 

  3. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ. Genome-wide analysis of repressor element 1 silencing transcription factor silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A. 2004;101:10458–63.

    Article  CAS  Google Scholar 

  4. Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet. 2002;359:310–5.

    Article  CAS  Google Scholar 

  5. Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R, Majumder S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther. 2005;4:343–9.

    CAS  Google Scholar 

  6. Lawinger P, Venugopal R, Guo Z-S, Immaneni A, Devjani Sengupta D, Lu W, Rastelli L, Carneiro AMD, Levin V, Fuller GN, Echelard Y, Majumder S. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med. 2000;6:826–31.

    Article  CAS  Google Scholar 

  7. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamontio D, Cattaneo E. Huntington interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 2003;35:76–83.

    Article  CAS  Google Scholar 

  8. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330.

    Article  CAS  Google Scholar 

  9. Bithell A, Johnson R, Buckley NJ. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans. 2009;37:1270–5.

    Article  CAS  Google Scholar 

  10. Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis. 2010;39:28–39.

    Article  CAS  Google Scholar 

  11. Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J Neurosci. 2010;30:4806–14.

    Article  CAS  Google Scholar 

  12. Willis DE, Wang M, Brown E, Fones L, Cave JW. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett. 2016;625:20–5.

    Article  CAS  Google Scholar 

  13. Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MVL, Zukin RS. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci USA. 2012;109:E962–71.

    Article  Google Scholar 

  14. Suo H, Wang P, Tong J, Cai L, Liu J, Huang D, Huang L, Wang Z, Huang Y, Xu J, Ma Y, Yu M, Fei J, Huang F. NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2015;99:67–78.

    Article  CAS  Google Scholar 

  15. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang T-H, Kim H-M, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014;507:448–54.

    Article  CAS  Google Scholar 

  16. Orta-Salazar E, Aguilar-Vázquez A, Martínez-Coria H, Luquín-De Anda S, Rivera-Cervantes M, Beas-Zarate C, Feria-Velasco A, Díaz-Cintra S. REST/NRSF-induced changes of ChAT protein expression in the neocortex and hippocampus of the 3xTg-AD mouse model for Alzheimer’s disease. Life Sci. 2014;116:83–9.

    Article  CAS  Google Scholar 

  17. Kreisler A, Strissel PL, Strick R, Neumann SB, Schumacher U, Becker CM. Regulation of the NRSF/REST gene by methylation and CREB affects the cellular phenotype of small-cell lung cancer. Oncogene. 2010;29:5828–38.

    Article  CAS  Google Scholar 

  18. Negrini S, Prada I, D’Alessandro R, Meldolesi J. REST: an oncogene or a tumor suppressor? Trends Cell Biol. 2013;23:289–95.

    Article  CAS  Google Scholar 

  19. Ooi L, Wood IC. Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet. 2007;8:544–54.

    Article  CAS  Google Scholar 

  20. Naruse Y, Aoki T, Kojima T, Mori N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci U S A. 1999;96:13691–6.

    Article  CAS  Google Scholar 

  21. Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y. The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. J Mol Biol. 2005;354:903–15.

    Article  CAS  Google Scholar 

  22. Leone S, Mutti C, Kazantsev A, Sturlese M, Moro S, Cattaneo E, Rigamonti D, Contini A. SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorg Med Chem. 2008;16:5695–703.

    Article  CAS  Google Scholar 

  23. Charbord J, Poydenot P, Bonnefond C, Feyeux M, Casagrande F, Brinon B, Francelle L, Aurégan G, Guillermier M, Cailleret M, Viegas P, Nicoleau C, Martinat C, Brouillet E, Cattaneo E, Peschanski M, Lechuga M, Perrier AL. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells. 2013;31:1816–28.

    Article  CAS  Google Scholar 

  24. Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, Mutti C, Cotelli F, Contini A, Cattaneo E. Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem. 2013;127:22–35.

    CAS  Google Scholar 

  25. Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.

    Article  CAS  Google Scholar 

  26. Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed. 2003;42:864–90.

    Article  CAS  Google Scholar 

  27. Dalvit C, Pevarello P, Tatò M, Veronesi M, Vulpetti A, Sundström M. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR. 2000;18:65–8.

    Article  CAS  Google Scholar 

  28. Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR. 2001;21:349–59.

    Article  CAS  Google Scholar 

  29. Antanasijevic A, Ramirez B, Caffrey M. Comparison of the sensitivities of WaterLOGSY and saturation transfer difference NMR experiments. J Biomol NMR. 2014;60:37–44.

    Article  CAS  Google Scholar 

  30. Geyer JP, Döker R, Kremer W, Zhao X, Kuhlmann J, Kalbitzer HR. Solution structure of the Ran-binding domain 2 of RanBP2 and its interaction with the C terminus of Ran. J Mol Biol. 2005;348:711–25.

    Article  CAS  Google Scholar 

  31. De Lano WL. The PyMOL molecular graphics system. http://www.pymol.org. 2015.

  32. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–7.

    Article  CAS  Google Scholar 

  33. de Vries SJ, van Dijk M, Bonvin AMJJ. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010;5:883–97.

    Article  CAS  Google Scholar 

  34. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17. https://doi.org/10.1186/1758-2946-4-17.

    Article  CAS  Google Scholar 

  35. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35.

    Article  CAS  Google Scholar 

  36. Addicoat MA, Vankova N, Akter IF, Heine T. Extension of the universal force field to metal-organic frameworks. J Chem Theory Comput. 2014;10:880–91.

    Article  CAS  Google Scholar 

  37. Mizukoshi Y, Abe A, Takizawa T, Hanzawa H, Fukunishi Y, Shimada I, Takahashi H. An accurate pharmacophore mapping method by NMR spectroscopy. Angew Chem Int Ed Engl. 2012;51:1362–5.

    Article  CAS  Google Scholar 

  38. Cala O, Guillière F, Krimm I. NMR-based analysis of protein – ligand interactions. Anal Bioanal Chem. 2014;406:943–56.

    Article  CAS  Google Scholar 

  39. Sklenar V, Piotto M, Leppik R, Saudek V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Reson Ser A. 1993;102:241–5.

    Article  CAS  Google Scholar 

  40. Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor. J Mol Biol. 2008;375:1444–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Nishimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kurita, Ji., Hirao, Y., Miyata, N., Nishimura, Y. (2018). NMR Screening of mSin3B Binding Compounds for the Interaction Inhibition with a Neural Repressor, NRSF/REST. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_64

Download citation

Publish with us

Policies and ethics