NMR Screening of mSin3B Binding Compounds for the Interaction Inhibition with a Neural Repressor, NRSF/REST

  • Jun-ichi Kurita
  • Yuuka Hirao
  • Naoki Miyata
  • Yoshifumi Nishimura
Reference work entry

Abstract

A neuron-restrictive silencer factor (NRSF/REST) binds to neural restrictive silencing element found in almost all neuronal genes and recruits corepressors to inhibit the neuronal gene expression in non-neuronal cells and neuron progenitor cells. One of the corepressors, mSin3, contains four paired amphipathic helix (PAH) domains, PAH1–PAH4, and the PAH1 domain binds to the repressor domain of NRSF/REST. Dysregulation of NRSF/REST is related to severe neurological diseases, for example, Huntington’s disease, medulloblastoma, and neuropathic pains. Inhibitor compounds, which bind to the NRSF/REST binding site of the PAH1 domain and inhibit the binding of NRSF/REST, are likely drug candidates to recover from these severe neurological diseases. So far, the biochemical and cellular functions of several compounds have been examined related to diseases such as Huntington’s disease, partially based on the complex structure of the NRSF/REST repressor domain bound to the mSin3 PAH1 domain. To design rationally such inhibitor compounds, NMR is one of the most powerful methods. The binding abilities of some compounds to the PAH1 domain have been examined by NMR: saturation transfer difference (STD) and heteronuclear single quantum coherence (HSQC) experiments. Together with docking calculations using Haddock, NMR chemical shift perturbations suggest the binding modes of a few compounds to the PAH1 domain. NMR reveals that the binding compounds have some rotational isomers in their unbound states; however, Haddock shows that a few rotational isomers adopt fully the mSin3 binding pocket. Thus, NMR will be a key player to develop efficient compounds to recover from the severe neurological diseases.

Keywords

Neurological disease NRSF/REST mSin3 Interaction inhibitor NMR Screening Silencer Medulloblastoma Huntington’s disease Neuropathic pain 

References

  1. 1.
    Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995;267:1360–3.CrossRefGoogle Scholar
  2. 2.
    Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G. REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.CrossRefGoogle Scholar
  3. 3.
    Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ. Genome-wide analysis of repressor element 1 silencing transcription factor silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A. 2004;101:10458–63.CrossRefGoogle Scholar
  4. 4.
    Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet. 2002;359:310–5.CrossRefGoogle Scholar
  5. 5.
    Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R, Majumder S. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther. 2005;4:343–9.Google Scholar
  6. 6.
    Lawinger P, Venugopal R, Guo Z-S, Immaneni A, Devjani Sengupta D, Lu W, Rastelli L, Carneiro AMD, Levin V, Fuller GN, Echelard Y, Majumder S. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med. 2000;6:826–31.CrossRefGoogle Scholar
  7. 7.
    Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamontio D, Cattaneo E. Huntington interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 2003;35:76–83.CrossRefGoogle Scholar
  8. 8.
    Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81:294–330.CrossRefGoogle Scholar
  9. 9.
    Bithell A, Johnson R, Buckley NJ. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans. 2009;37:1270–5.CrossRefGoogle Scholar
  10. 10.
    Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis. 2010;39:28–39.CrossRefGoogle Scholar
  11. 11.
    Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. J Neurosci. 2010;30:4806–14.CrossRefGoogle Scholar
  12. 12.
    Willis DE, Wang M, Brown E, Fones L, Cave JW. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett. 2016;625:20–5.CrossRefGoogle Scholar
  13. 13.
    Noh KM, Hwang JY, Follenzi A, Athanasiadou R, Miyawaki T, Greally JM, Bennett MVL, Zukin RS. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc Natl Acad Sci USA. 2012;109:E962–71.CrossRefGoogle Scholar
  14. 14.
    Suo H, Wang P, Tong J, Cai L, Liu J, Huang D, Huang L, Wang Z, Huang Y, Xu J, Ma Y, Yu M, Fei J, Huang F. NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2015;99:67–78.CrossRefGoogle Scholar
  15. 15.
    Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang T-H, Kim H-M, Drake D, Liu XS, Bennett DA, Colaiácovo MP, Yankner BA. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014;507:448–54.CrossRefGoogle Scholar
  16. 16.
    Orta-Salazar E, Aguilar-Vázquez A, Martínez-Coria H, Luquín-De Anda S, Rivera-Cervantes M, Beas-Zarate C, Feria-Velasco A, Díaz-Cintra S. REST/NRSF-induced changes of ChAT protein expression in the neocortex and hippocampus of the 3xTg-AD mouse model for Alzheimer’s disease. Life Sci. 2014;116:83–9.CrossRefGoogle Scholar
  17. 17.
    Kreisler A, Strissel PL, Strick R, Neumann SB, Schumacher U, Becker CM. Regulation of the NRSF/REST gene by methylation and CREB affects the cellular phenotype of small-cell lung cancer. Oncogene. 2010;29:5828–38.CrossRefGoogle Scholar
  18. 18.
    Negrini S, Prada I, D’Alessandro R, Meldolesi J. REST: an oncogene or a tumor suppressor? Trends Cell Biol. 2013;23:289–95.CrossRefGoogle Scholar
  19. 19.
    Ooi L, Wood IC. Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet. 2007;8:544–54.CrossRefGoogle Scholar
  20. 20.
    Naruse Y, Aoki T, Kojima T, Mori N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci U S A. 1999;96:13691–6.CrossRefGoogle Scholar
  21. 21.
    Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y. The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. J Mol Biol. 2005;354:903–15.CrossRefGoogle Scholar
  22. 22.
    Leone S, Mutti C, Kazantsev A, Sturlese M, Moro S, Cattaneo E, Rigamonti D, Contini A. SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorg Med Chem. 2008;16:5695–703.CrossRefGoogle Scholar
  23. 23.
    Charbord J, Poydenot P, Bonnefond C, Feyeux M, Casagrande F, Brinon B, Francelle L, Aurégan G, Guillermier M, Cailleret M, Viegas P, Nicoleau C, Martinat C, Brouillet E, Cattaneo E, Peschanski M, Lechuga M, Perrier AL. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells. 2013;31:1816–28.CrossRefGoogle Scholar
  24. 24.
    Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, Mutti C, Cotelli F, Contini A, Cattaneo E. Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem. 2013;127:22–35.Google Scholar
  25. 25.
    Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001;123:6108–17.CrossRefGoogle Scholar
  26. 26.
    Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed. 2003;42:864–90.CrossRefGoogle Scholar
  27. 27.
    Dalvit C, Pevarello P, Tatò M, Veronesi M, Vulpetti A, Sundström M. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR. 2000;18:65–8.CrossRefGoogle Scholar
  28. 28.
    Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR. 2001;21:349–59.CrossRefGoogle Scholar
  29. 29.
    Antanasijevic A, Ramirez B, Caffrey M. Comparison of the sensitivities of WaterLOGSY and saturation transfer difference NMR experiments. J Biomol NMR. 2014;60:37–44.CrossRefGoogle Scholar
  30. 30.
    Geyer JP, Döker R, Kremer W, Zhao X, Kuhlmann J, Kalbitzer HR. Solution structure of the Ran-binding domain 2 of RanBP2 and its interaction with the C terminus of Ran. J Mol Biol. 2005;348:711–25.CrossRefGoogle Scholar
  31. 31.
    De Lano WL. The PyMOL molecular graphics system. http://www.pymol.org. 2015.
  32. 32.
    Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–7.CrossRefGoogle Scholar
  33. 33.
    de Vries SJ, van Dijk M, Bonvin AMJJ. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010;5:883–97.CrossRefGoogle Scholar
  34. 34.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17.  https://doi.org/10.1186/1758-2946-4-17.CrossRefGoogle Scholar
  35. 35.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35.CrossRefGoogle Scholar
  36. 36.
    Addicoat MA, Vankova N, Akter IF, Heine T. Extension of the universal force field to metal-organic frameworks. J Chem Theory Comput. 2014;10:880–91.CrossRefGoogle Scholar
  37. 37.
    Mizukoshi Y, Abe A, Takizawa T, Hanzawa H, Fukunishi Y, Shimada I, Takahashi H. An accurate pharmacophore mapping method by NMR spectroscopy. Angew Chem Int Ed Engl. 2012;51:1362–5.CrossRefGoogle Scholar
  38. 38.
    Cala O, Guillière F, Krimm I. NMR-based analysis of protein – ligand interactions. Anal Bioanal Chem. 2014;406:943–56.CrossRefGoogle Scholar
  39. 39.
    Sklenar V, Piotto M, Leppik R, Saudek V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Reson Ser A. 1993;102:241–5.CrossRefGoogle Scholar
  40. 40.
    Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor. J Mol Biol. 2008;375:1444–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jun-ichi Kurita
    • 1
  • Yuuka Hirao
    • 1
  • Naoki Miyata
    • 2
  • Yoshifumi Nishimura
    • 1
  1. 1.Graduate School of Medical Life ScienceYokohama City UniversityYokohamaJapan
  2. 2.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan

Personalised recommendations