Solid-State NMR Studies of the Interactions and Structure of Antimicrobial Peptides in Model Membranes

  • Matthieu Fillion
  • Marise Ouellet
  • Michéle AugerEmail author
Reference work entry


Cationic antimicrobial peptides are part of the innate immune system of several organisms and represent great hope to fight against multidrug-resistant bacteria. Despite their structural diversity, they share common characteristics such as a short length, a net positive charge, and an amphiphilic character. However, the detailed mechanisms of action of these peptides are still unclear. In the literature, there is clear evidence that cationic antimicrobial peptides target the membrane of bacterial pathogens where they induce defects that will eventually kill bacteria by creating an electrochemical gradient imbalance. Therefore, to design more potent and selective antimicrobial peptides that are viable on a pharmacological point of view, a better understanding of the molecular determinants involved in the membrane interactions is required.

In this regard, the most suitable technique to study cationic antimicrobial peptides in their native environment, i.e., a lipid bilayer in a fluid phase, is solid-state NMR. Exploiting the different NMR interactions, this technique has proven to be useful to provide information on the mutual interactions between membrane-active peptides and phospholipids with an atomic-scale resolution. In particular, the conformation of the peptides in addition to their location in the membrane is an important feature of the mechanism of action that needs to be addressed. In this context, this chapter is devoted to present the most recent developments in the field of solid-state NMR for elucidating the conformation and membrane topology of these peptides reconstituted in lipid mimetic membranes.


Antimicrobial peptides Lipid membranes Solid-state NMR Interactions Structure Topology Dynamics Modes of action Degree of penetration Bacteria 


  1. 1.
    Schmidt FR. The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol. 2004;63:335–43.CrossRefGoogle Scholar
  2. 2.
    Hancock REW, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998;16:82–8.CrossRefGoogle Scholar
  3. 3.
    Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43:1317–23.Google Scholar
  4. 4.
    Hancock REW. Host defence (cationic) peptides. Drugs. 1999;57:469–73.CrossRefGoogle Scholar
  5. 5.
    Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta. 1999;1462:29–54.CrossRefGoogle Scholar
  6. 6.
    Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta. 1999;1462:71–87.CrossRefGoogle Scholar
  7. 7.
    Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta. 2002;1558:171–86.CrossRefGoogle Scholar
  8. 8.
    Epand RM, Shai Y, Segrest JP, Anantharamaiah GM. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37:319–38.CrossRefGoogle Scholar
  9. 9.
    Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 1758;2006:1184–202.Google Scholar
  10. 10.
    Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.CrossRefGoogle Scholar
  11. 11.
    Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978;515:105–40.CrossRefGoogle Scholar
  12. 12.
    Epand RM, D’Souza K, Berno B, Schlame M. Membrane curvature modulation of protein activity determined by NMR. Biochim Biophys Acta. 1848;2015:220–8.Google Scholar
  13. 13.
    Lee DK, Bhunia A, Kotler SA, Ramamoorthy A. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry. 2015;54:1897–907.CrossRefGoogle Scholar
  14. 14.
    Chia CSB, Torres J, Cooper MA, Arkin IT, Bowie JH. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Lett. 2002;512:47–51.CrossRefGoogle Scholar
  15. 15.
    Bouchard M, Le Guernevé C, Auger M. Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: a solid-state 13C NMR study. Biochim Biophys Acta. 1998;1415:181–92.CrossRefGoogle Scholar
  16. 16.
    Prenner EJ, Lewis RNAH, Neuman KC, Gruner SM, Kondejewski LH, Hodges RS, et al. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity. Biochemistry. 1997;36:7906–16.CrossRefGoogle Scholar
  17. 17.
    Driessen AJM, van den Hooven HW, Kuiper W, van de Kamp M, Sahl H-G, Konings RNH, et al. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry. 1995;34:1606–14.CrossRefGoogle Scholar
  18. 18.
    Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys. 2012;14:15739–51.CrossRefGoogle Scholar
  19. 19.
    Gehman JD, Luc F, Hall K, Lee T-H, Boland MP, Pukala TL, et al. Effect of antimicrobial peptides from australian tree frogs on anionic phospholipid membranes. Biochemistry. 2008;47:8557–65.CrossRefGoogle Scholar
  20. 20.
    Picard F, Pézolet M, Bougis PE, Auger M. Hydrophobic and electrostatic cardiotoxin-phospholipid interactions as seen by solid-state 31P NMR spectroscopy. Can J Anal Sci Spectrosc. 2000;45:72–83.Google Scholar
  21. 21.
    Bonev BB, Chan WC, Bycroft BW, Roberts GCK, Watts A. Interaction of the lantibiotic nisin with mixed lipid bilayers: a 31P and 2H NMR study. Biochemistry. 2000;39:11425–33.CrossRefGoogle Scholar
  22. 22.
    Epand RF, Wang G, Berno B, Epand RM. Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother. 2009;53:3705–14.CrossRefGoogle Scholar
  23. 23.
    Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J. 2009;96:552–65.CrossRefGoogle Scholar
  24. 24.
    Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, et al. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and LPS selective binding. Biochemistry. 2006;45:6529–40.CrossRefGoogle Scholar
  25. 25.
    Bertelsen K, Dorosz J, Hansen SK, Nielsen NC, Vosegaard T. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLoS One. 2012;7:e47745.CrossRefGoogle Scholar
  26. 26.
    Wi S, Kim C. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. J Phys Chem B. 2008;112:11402–14.CrossRefGoogle Scholar
  27. 27.
    Davis JH. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983;737:117–71.CrossRefGoogle Scholar
  28. 28.
    Seelig J, Seelig A. Lipid conformation in model membrane and biological membranes. Q Rev Biophys. 1980;13:19–61.CrossRefGoogle Scholar
  29. 29.
    Salnikov ES, Mason AJ, Bechinger B. Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie. 2009;91:734–43.CrossRefGoogle Scholar
  30. 30.
    Balla MS, Bowie JH, Separovic F. Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes. Eur Biophys J. 2004;33:109–16.CrossRefGoogle Scholar
  31. 31.
    Fernandez DI, Sani MA, Gehman JD, Hahm KS, Separovic F. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Eur Biophys J. 2011;40:471–80.CrossRefGoogle Scholar
  32. 32.
    Misiewicz J, Afonin S, Grage SL, van den Berg J, Strandberg E, Wadhwani P, et al. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR. J Biomol NMR. 2015;61:287–98.CrossRefGoogle Scholar
  33. 33.
    Tardy-Laporte C, Arnold AA, Genard B, Gastineau R, Morançais M, Mouget J-L, et al. A 2H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. Biochim Biophys Acta. 1828;2013:614–22.Google Scholar
  34. 34.
    Pius J, Morrow MR, Booth V. 2H Solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Biochemistry. 2012;51:118–25.CrossRefGoogle Scholar
  35. 35.
    Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solid-state NMR. Biochim Biophys Acta. 2016;1858:2959–64.CrossRefGoogle Scholar
  36. 36.
    Munowitz MG, Griffin RG, Bodenhausen G, Huang TH. Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc. 1981;103:2529–33.CrossRefGoogle Scholar
  37. 37.
    Tang M, Waring AJ, Hong M. Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR. ChemBioChem. 2008;9:1487–92.CrossRefGoogle Scholar
  38. 38.
    Doherty T, Waring AJ, Hong M. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR. Biochemistry. 2008;47:1105–16.CrossRefGoogle Scholar
  39. 39.
    Fillion M, Auger M. Oriented samples: a tool for determining the membrane topology and the mechanism of action of cationic antimicrobial peptides by solid-state NMR. Biophys Rev. 2015;7:311–20.CrossRefGoogle Scholar
  40. 40.
    Hallock KJ, Henzler Wildman K, Lee D-K, Ramamoorthy A. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys J. 2002;82:2499–503.CrossRefGoogle Scholar
  41. 41.
    Prosser RS, Hunt SA, DiNatale JA, Vold RR. Magnetically aligned membrane model systems with positive order parameter: switching the sign of Szz with paramagnetic ions. J Am Chem Soc. 1996;118:269–70.CrossRefGoogle Scholar
  42. 42.
    Bechinger B, Sizun C. Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopy. Concepts Magn Reson. 2003;18A:130–45.CrossRefGoogle Scholar
  43. 43.
    Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Solid-state NMR investigations of peptide-lipid interaction and orientation of a β-sheet antimicrobial peptide. Biochemistry. 2002;41:9852–62.CrossRefGoogle Scholar
  44. 44.
    Tang M, Waring AJ, Lehrer RI, Hong M. Orientation of a β-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Biophys J. 2006;90:3616–24.CrossRefGoogle Scholar
  45. 45.
    Salnikov ES, Aisenbrey C, Balandin SV, Zhmak MN, Ovchinnikova TV, Bechinger B. Structure and alignment of the membrane-associated antimicrobial peptide arenicin by oriented solid-state NMR spectroscopy. Biochemistry. 2011;50:3784–95.CrossRefGoogle Scholar
  46. 46.
    Heinzmann R, Grage SL, Schalck C, Bürck J, Bánóczi Z, Toke O, et al. A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. Eur Biophys J. 2011;40:463–70.CrossRefGoogle Scholar
  47. 47.
    Strandberg E, Zerweck J, Wadhwani P, Ulrich AS. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. Biophys J. 2013;104:L9–11.CrossRefGoogle Scholar
  48. 48.
    Mason AJ, Bertani P, Moulay G, Marquette A, Perrone B, Drake AF, et al. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream. Biochemistry. 2007;46:15175–87.CrossRefGoogle Scholar
  49. 49.
    Resende JM, Moraes CM, Munhoz VH, Aisenbrey C, Verly RM, Bertani P, et al. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2009;106:16639–44.CrossRefGoogle Scholar
  50. 50.
    Opella SJ, Marassi FM. Structure determination of membrane proteins by NMR spectroscopy. Chem Rev. 2004;104:3587–606.CrossRefGoogle Scholar
  51. 51.
    Marassi FM. NMR of peptides and proteins in oriented membranes. Concepts Magn Reson. 2002;14:212–24.CrossRefGoogle Scholar
  52. 52.
    Marassi FM. A simple approach to membrane protein secondary structure and topology based on NMR spectroscopy. Biophys J. 2001;80:994–1003.CrossRefGoogle Scholar
  53. 53.
    Jeong JH, Kim JS, Choi SS, Kim Y. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys J. 2016;110:423–30.CrossRefGoogle Scholar
  54. 54.
    Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, et al. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J. 2009;96:86–100.CrossRefGoogle Scholar
  55. 55.
    Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J. 2010;98:248–57.CrossRefGoogle Scholar
  56. 56.
    De Angelis AA, Grant Christopher V, Baxter Matthew K, McGavin Jason A, Opella Stanley J, Cotten ML. Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers. Biophys J. 2011;101:1086–94.CrossRefGoogle Scholar
  57. 57.
    Kumashiro KK, Schmidt-Rohr K, Murphy III OJ, Ouellette KL, Cramer WA, Thompson LK. A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc. 1998;120:5043–51.CrossRefGoogle Scholar
  58. 58.
    Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M. Membrane-dependent oligomeric structure and pore formation of a β-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci U S A. 2006;103:16242–7.CrossRefGoogle Scholar
  59. 59.
    Su Y, Waring AJ, Ruchala P, Hong M. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry. 2011;50:2072–83.CrossRefGoogle Scholar
  60. 60.
    Doherty T, Waring AJ, Hong M. Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR. Biochemistry. 2006;45:13323–30.CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Lu W, Hong M. Membrane-bound structure and topology of a human alpha defensin indicates a dimer pore mechanism for membrane disruption. Biochemistry. 2010;49:9770–82.CrossRefGoogle Scholar
  62. 62.
    Saito H. Conformation-dependent carbon-13 chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state carbon-13 NMR. Magn Reson Chem. 1986;24:835–52.CrossRefGoogle Scholar
  63. 63.
    Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, et al. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J. 2012;103:1735–43.CrossRefGoogle Scholar
  64. 64.
    Nagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, et al. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim Biophys Acta. 1848;2015:2789–98.Google Scholar
  65. 65.
    Auger M. Solid-state NMR, study of protein structure. Methods based on the measurement of internuclear distances. J Chem Phys. 1995;92:1751–60.Google Scholar
  66. 66.
    Gullion T. Introduction to rotational-echo double-resonance NMR. Concepts Magn Reson. 1998;10:277–89.CrossRefGoogle Scholar
  67. 67.
    Raleigh DP, Levitt MH, Griffin RG. Rotational resonance in solid state NMR. Chem Phys Lett. 1988;146:71–6.CrossRefGoogle Scholar
  68. 68.
    Porcelli F, Buck B, Lee D-K, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004;279:45815–23.CrossRefGoogle Scholar
  69. 69.
    Toke O, Maloy WL, Kim SJ, Blazyk J, Schaefer J. Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR. Biophys J. 2004;87:662–74.CrossRefGoogle Scholar
  70. 70.
    Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, et al. Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry. 2006;45:8341–9.CrossRefGoogle Scholar
  71. 71.
    Lam Y-H, Wassall SR, Morton CJ, Smith R, Separovic F. Solid-state NMR structure determination of melittin in a lipid environment. Biophys J. 2001;81:2752–61.CrossRefGoogle Scholar
  72. 72.
    Takegoshi K, Nakamura S, Terao T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett. 2001;344:631–7.CrossRefGoogle Scholar
  73. 73.
    Hong M. Torsion angle determination by solid-state NMR. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2006. p. 727–33.CrossRefGoogle Scholar
  74. 74.
    Tang M, Waring AJ, Hong M. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J Am Chem Soc. 2007;129:11438–46.CrossRefGoogle Scholar
  75. 75.
    Barnes AB, Paëpe GD, van der Wel PCA, Hu KN, Joo CG, Bajaj VS, et al. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson. 2008;34:237–63.CrossRefGoogle Scholar
  76. 76.
    Su Y, Andreas L, Griffin RG. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu Rev Biochem. 2015;84:465–97.CrossRefGoogle Scholar
  77. 77.
    Salnikov ES, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, et al. Solid-state NMR/dynamic nuclear polarization of polypeptides in planar supported lipid bilayers. J Phys Chem B. 2015;119:14574–83.CrossRefGoogle Scholar
  78. 78.
    Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids. 2012;165:282–301.CrossRefGoogle Scholar
  79. 79.
    Strandberg E, Ulrich AS. NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson. 2004;23A:89–120.CrossRefGoogle Scholar
  80. 80.
    Marassi FM, Opella SJ. A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson. 2000;144:150–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthieu Fillion
    • 1
  • Marise Ouellet
    • 1
  • Michéle Auger
    • 1
    Email author
  1. 1.Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF)Université LavalQuébecCanada

Personalised recommendations