Structure and Dynamics of Membrane-Bound Proteins

  • Katsuyuki NishimuraEmail author
  • Michikazu Tanio
  • Satoru Tuzi
Reference work entry


Several types of membrane proteins, including temporally bound peripheral membrane proteins, lipid-anchored proteins, and protein moieties protruding from the membrane surface, are biologically very important because of the presence of their functional moieties undergoing cell signaling, cytoskeletal rearrangement, and other processes at the membrane surfaces, although these structures have not yet been fully clarified because of their structural heterogeneity. It is emphasized that combined utilization of both solid-state and solution NMR experiments is essential to reveal their substantially varied dynamic structures. In this connection, structural features of amyloid proteins, α-synuclein (αS) and amyloid β (Aβ) protein, bound to membranes were also discussed in relation to their pathogenesis of respective amyloid diseases.


Membrane-bound protein Peripheral membrane protein Lipid-anchored protein Membrane-bound amyloid protein Solid-state NMR Solution NMR 


  1. 1.
    Lemmon MA, Fergusonn KM, O’Brien R, Sigler PB, Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995;92:10472–6.CrossRefGoogle Scholar
  2. 2.
    Várnai P, Lin X, Lee SB, Tuymetova G, Bondeva T, Spät A, Rhee SG, Hajnóczky G, Balla T. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. J Biol Chem. 2002;277:27412–22.CrossRefGoogle Scholar
  3. 3.
    Tuzi S, Uekama N, Okada M, Yamaguchi S, Saitô H, Yagisawa H. Structure and dyanamics of the phospholipase C-δ1 pleckstrin homolog domain located at the lipid bilayers surface. J Biol Chem. 2003;278:28019–25.CrossRefGoogle Scholar
  4. 4.
    Resh MD. Trafficking and signalling by fatty-acylated and prenylated proteins. Nat Chem Biol. 2006;2:584–90.CrossRefGoogle Scholar
  5. 5.
    Lee HJ, Choi C, LEE SJ. Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem. 2002;277:671–8.CrossRefGoogle Scholar
  6. 6.
    Aisenbrey C, Borowik T, Byström B, Bokvist M, Lindström F, Misiak H, Sani M-A, Gröbner G. How is protein aggregation in amyloidogenic diseases modulated by biological membranes? Eur Biophys J. 2008;37:247–55.CrossRefGoogle Scholar
  7. 7.
    Williams TL, Serpell LC. Membrane and surface interactions of Alzheimer’s Aβ peptide-insights into the mechanism of cytotoxicity. FEBS J. 2011;278:3905–17.CrossRefGoogle Scholar
  8. 8.
    Saitô H. Site-directed solid-state NMR on membrane protein. Annu Rep NMR Spectrosc. 2006;9:99–175.CrossRefGoogle Scholar
  9. 9.
    Saitô H, Ando I, Naito A. Solid state NMR spectroscopy for biopolymers: principles and applications. Dordrecht: Springer; 2006.Google Scholar
  10. 10.
    Saitô H, Naito A. NMR studies on fully hydrated membrane proteins, with emphasis on bacteriorhodopsin as a typical and prototype membrane protein. Biochim Biophys Acta. 2007;1768:3145–61.Google Scholar
  11. 11.
    Saitô H. Dynamic pictures of proteins by NMR. Annu Rep NMR Spectrosc. 2014;83:1–66.CrossRefGoogle Scholar
  12. 12.
    Baldus M, Petkova AT, Herzfeld J, Griffin RG. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin system. Mol Phys. 1998;95:1197–207.CrossRefGoogle Scholar
  13. 13.
    Takegoshi K, Nakamura S, Terao T. 13C-1H dipolar assisted rotational resonance in magic angle spinning NMR. Chem Phys Lett. 2001;344:631–7.CrossRefGoogle Scholar
  14. 14.
    Burum DP, Ernst RR. Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson. 1980;39:163–8.Google Scholar
  15. 15.
    Bax A, Freeman R, Kempsell SP. Natural abundance 13C-13C coupling observed via double-quantum coherence. J Am Chem Soc. 1980;102:4849–51.CrossRefGoogle Scholar
  16. 16.
    Rothwell WP, Waugh JS. Transverse relaxation of dipolar coupled spin systems under rf irradiation: detecting motions in solids. J Chem Phys. 1981;74:2721–32.CrossRefGoogle Scholar
  17. 17.
    Suwelack D, Rothwell WP, Waugh JS. Slow molecular motion detected in the NMR spectra of rotating solids. J Chem Phys. 1980;73:2559–69.CrossRefGoogle Scholar
  18. 18.
    Corey EJ, Fuchs PL. Negative nuclear overhauser effects as probes of macromolecular structure. J Am Cem Soc. 1972;94:4015–6.CrossRefGoogle Scholar
  19. 19.
    Clore GM, Gronenborn AM. Theory and applications of the transferred nuclear overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Reson. 1982;48:402–17.Google Scholar
  20. 20.
    Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I. A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol. 2000;7:220–3.CrossRefGoogle Scholar
  21. 21.
    Nakanishi T, Miyazawa M, Sakakura M, Terasawa H, Takahashi H, Shimada I. Determination of the interface of a large protein complex by transferred cross-saturation measurements. J Mol Biol. 2002;318:245–9.CrossRefGoogle Scholar
  22. 22.
    Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM. Atomic resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature. 2011;480:268–72.CrossRefGoogle Scholar
  23. 23.
    Vallurupalli P, Bouvignies G, Kay LE. Studying “invisible” excited protein states in slow exchange with a major state conformation. J Am Chem Soc. 2012;134:8148–61.CrossRefGoogle Scholar
  24. 24.
    Saitô H. Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high resolution solid-state NMR. Magn Reson Chem. 1986;24:835–52.CrossRefGoogle Scholar
  25. 25.
    Uekama N, Sugita T, Okada M, Yagisawa H, Tuzi S. Phophatydilserine induces functional and structural alteration of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. FEBS J. 2007;274:177–87.CrossRefGoogle Scholar
  26. 26.
    Uekama N, Aoki T, Maruoka T, Kurisu S, Hatakeyama A, Yamaguchi S, Okada M, Yagisawa H, Nishimura K, Tuzi S. Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phosholipase C-δ1. Biochim Biophys Acta. 2009;1788:2575–83.CrossRefGoogle Scholar
  27. 27.
    Tanio M, Nishimura K. Intermolecular allosteric interaction in the phospholipase C-δ1 pleckstrin homology domain. Biochim Biophys Acta. 2013;1834:1034–43.CrossRefGoogle Scholar
  28. 28.
    Tanio M, Nishimura K. Analysis of the phospholipase C-δ1 plecksrin homology domain using native polyacrylamide gel electrophoresis Anal Biochem. 2012;431:106–14.Google Scholar
  29. 29.
    Tokuda N, Kawai K, Lee YH, Ikegami T, Yamaguchi S, Yagisawa H, Fukui Y, Tuzi S. Membrane-induced alteration of the secondary structure in the SWAP-70 pleckstrin homology domain. J Biochem. 2012;151:391–401.CrossRefGoogle Scholar
  30. 30.
    Sugiki T, Takeuchi K, Yamaji T, Takano T, Tokunaga Y, Kumagi K, Hanada K, Takahashi H, Shimada I. Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). J Biol Chem. 2012;287:33706–18.CrossRefGoogle Scholar
  31. 31.
    Kutateladze TG, Capelluto DG, Ferguson CG, Cheever ML, Kutateladze AG, Prestwich GD, Overduin M. Multivalent mechanism of membrane insertion by the FYVE domain. J Biol Chem. 2004;279:3050–7.CrossRefGoogle Scholar
  32. 32.
    Nomura K, Harada E, Sugase K, Shimamoto K. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning. J Phys Chem B. 2014;118:2405–13.CrossRefGoogle Scholar
  33. 33.
    Nomura K, Tanimoto Y, Hayashi F, Harada E, Shan XY, Shionyu M, Hijikata A, Shirai T, Morigaki K, Shimamoto K. The role of the Prod1 membrane anchor in newt limb regeneration. Angew Chem Int Ed. 2016. Scholar
  34. 34.
    Kawamura I, Ikeda Y, Sudo Y, Iwamoto M, Shimono K, Yamaguchi S, Tuzi S, Saitô H, Kamo N, Naito A. Participation of the surface structure of pharaonis phoborhodopsin, ppR and its A149S and A149V mutants, consisting of the C-terminal α-helix and E-F loop, in the complex-formation with the cognate transducer pHtrII, as revealed by site-directed 13C solid-state NMR. Photochem Photobiol. 2007;83:339–45.CrossRefGoogle Scholar
  35. 35.
    Kawamura I, Yoshida H, Ikeda Y, Yamaguchi S, Tuzi S, Saitô H, Kamo N, Naito A. Dynamics change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR. Photochem Photobiol. 2008;84:921–30.CrossRefGoogle Scholar
  36. 36.
    Yamaguchi S, Tuzi S, Yonebayashi K, Naito A, Needleman R, Lanyi JK, Saito H. Surface dynamics of bacteriorhodopsin as revealed by 13C NMR studies on [13C]Ala-labeled proteins: determination of millisecond or microsecond motions in interhelical loops and C-terminal α-helix. J Biochem. 2001;129:373–82.CrossRefGoogle Scholar
  37. 37.
    Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M. Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Eng. 2007;46:459–62.CrossRefGoogle Scholar
  38. 38.
    Dürr UHN, Yamamoto K, Im S-C, Waskell L, Ramamoorthy A. Solid-state NMR reveals structural and dynamical properties of a membrane-anchored electron-carrier protein, cytochrome b5. J Am Chem Soc. 2007;129:6670–1.CrossRefGoogle Scholar
  39. 39.
    Ahuja S, Jahr N, Im S-C, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A. A Model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem. 2013;288:22080–95.CrossRefGoogle Scholar
  40. 40.
    Tjandra N, Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997;278:1111–4.CrossRefGoogle Scholar
  41. 41.
    Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and dynamics of micelle-bound human α-synuclein. J Biol Chem. 2005;280:9595–603.CrossRefGoogle Scholar
  42. 42.
    Ulmer TS, Bax A. Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem. 2005;280:43179–87.CrossRefGoogle Scholar
  43. 43.
    Bodner CR, Dobson CM, Bax A. Multiple tight phopholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy. J Mol Biol. 2009;390:775–90.CrossRefGoogle Scholar
  44. 44.
    Jao CC, Hegde BG, Chen J, Haworth IS, Langen R. Structure of membrane-bound alpha-synuclein from site-directed spin-labeling and computational refinement. Proc Natl Acad Sci U S A. 2008;105:19666–71.CrossRefGoogle Scholar
  45. 45.
    Fusco G, Simone AD, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat Commun. 2014;5:3827. (1-8).CrossRefGoogle Scholar
  46. 46.
    Wang GF, Li C, Pielak GJ. 19F NMR studies of a-synuclein-membrane interactions. Protein Sci. 2010;19:1686–91.CrossRefGoogle Scholar
  47. 47.
    Fusco G, Pape T, Stephens AD, Mahou P, Costa AR, Kaminski CF, Schierle GSK, Vendruscolo M, Veglia G, Dobson CM, ADe S. Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun. 2016;7:12563.CrossRefGoogle Scholar
  48. 48.
    Niu Z, Zhao W, Zhang Z, Xiao F, Tang X, Yang J. The molecular structure of Alzheimer β-amyloid fibrils formed in the presence of phospholipid vesicles. Angew Chem Int Ed Eng. 2014;53:9294–7.CrossRefGoogle Scholar
  49. 49.
    Petkova AT, Ishii Y, Balbach JJ, Antzukin ON, Leapman RD, Delaglio F, Tycko R. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A. 2002;99:16742–7.CrossRefGoogle Scholar
  50. 50.
    Kotler SA, Walsh P, Brender JR, Ramamoorthy A. Differences between amyloid-β aggregation in solution and on the membrane: insights towards elucidation of the mechanistic details of Alzhimer’s disease, Chem Soc Rev. 2014;43:6692–700.CrossRefGoogle Scholar
  51. 51.
    Yanagisawa K, Odaka A, Suzuki N, Ihara Y. GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat Med. 1995;1:1062–6.CrossRefGoogle Scholar
  52. 52.
    NakazawaY SY, Williamson MP, Saitô H, Asakura T. The interaction of amyloid Aβ(1–40) with lipid bilayers and ganglioside as studied by 31P solid-state NMR. Chem Phys Lipids. 2009;158:54–60.CrossRefGoogle Scholar
  53. 53.
    Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K. Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J. 2009;26:999–1006.CrossRefGoogle Scholar
  54. 54.
    Yagi-Utsumi M, Kato K, Nishimura K. Membrane-induced dichotomous conformation of amyloid β with the disordered N-terminal segment followed by the stable C-terminal β-structure. PLoS One. 2016;11:0146405. (1-10).CrossRefGoogle Scholar
  55. 55.
    Chen L, Olsen RA, Elliott DW, Boettcher JM, Zhou DH, Riensta CM, Müller LJ. Constant-time through-bond 13C correlation spectroscopy for assigning protein resonances with solid-state NMR spectroscopy. J Am Chem Soc. 2006;128:9992–3.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katsuyuki Nishimura
    • 1
    Email author
  • Michikazu Tanio
    • 2
  • Satoru Tuzi
    • 3
  1. 1.Institute for Molecular Science, National Institutes of Natural Sciences, and Graduate University for Advanced StudiesOkazakiJapan
  2. 2.National Institute of Infectious DiseasesTokyoJapan
  3. 3.Graduate School of Life ScienceUniversity of HyogoHyogoJapan

Personalised recommendations