Multiple-Quantum NMR Studies of Anisotropic Polymer Chain Dynamics

Reference work entry

Abstract

Multiple quantum (MQ) NMR, specifically the analysis of double-quantum build-up curves, provides quantitative information on proton–proton dipolar couplings or alternatively on deuterium quadrupolar couplings. The study of these interactions, in particular when they are only partially averaged by transiently anisotropic molecular motion, provides valuable information on amplitude and timescale of rotational motions of the related molecular segments. MQ NMR has in recent years evolved as one of the most powerful methods for the study of polymer chain motion in a variety of systems, also owing to the fact that the proton-detected variant is readily applicable on cost-efficient low-field instrumentation. This chapter provides an overview of the most relevant technical aspects, recent improvements, and applications to different polymer materials, with a focus on work published during the last decade. Particular emphasis is devoted to the studies of elastomers and hydrogels, for which the method provides unique structural information. Confined chain motion, found in entangled melts, block copolymers, or grafted systems, is also addressed.

Keywords

Order parameter Polymer networks Hydrogels Rubber Polymer melts Entanglements Supramolecular polymers Confinement effects Nanocomposites Filled elastomers 

References

  1. 1.
    Graf R, Heuer A, Spiess HW. Chain-order effects in polymer melts probed by 1H double-quantum NMR spectrocopy. Phys Rev Lett. 1998;80:5738–41.CrossRefGoogle Scholar
  2. 2.
    Fechete R, Demco DE, Blümich B. Segmental anisotropy in strained elastomers by 1H NMR of multipolar Spin States. Macromolecules. 2002;35:6083–5.CrossRefGoogle Scholar
  3. 3.
    Saalwächter K, Ziegler P, Spyckerelle O, Haidar B, Vidal A, Sommer JU. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: evidence for a linear mixing law in bimodal systems. J Chem Phys. 2003;119:3468–82.CrossRefGoogle Scholar
  4. 4.
    Navon G, Shinar H, Eliav U, Seo Y. Multiquantum filters and order in tissues. NMR Biomed. 2001;14:112–32.CrossRefGoogle Scholar
  5. 5.
    Lorthioir C, Randriamahefa S, Deloche B. Some aspects of the orientational order distribution of flexible chains in a diblock mesophase. J Chem Phys. 2013;139:224903.CrossRefGoogle Scholar
  6. 6.
    Furtado F, Damron J, Trutschel ML, Franz C, Schröter K, Ball RC, et al. NMR observations of entangled polymer dynamics: focus on tagged chain dynamics and confirmation from a simulation model. Macromolecules. 2014;47:256–68.CrossRefGoogle Scholar
  7. 7.
    Saalwächter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog Nucl Magn Reson Spectrosc. 2007;51:1–35.CrossRefGoogle Scholar
  8. 8.
    Saalwächter K, Robust NMR. Approaches for the determination of homonuclear dipole–dipole coupling constants in studies of solid materials and biomolecules. ChemPhysChem. 2013;14:3000–14.CrossRefGoogle Scholar
  9. 9.
    Schnell I, Spiess HW. High-resolution 1H NMR spectroscopy in the solid state: very-fast sample rotation and multiple-quantum coherences. J Magn Reson/Adv Magn Reson. 2001;151:153–227.CrossRefGoogle Scholar
  10. 10.
    Kaji H. Quantitative analysis of conformations in disordered polymers by solid-state multiple-quantum NMR. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2008. p. 563–6.Google Scholar
  11. 11.
    Hong Y, Miyoshi T. Chain-folding Structure of a semicrystalline polymer in bulk crystals determined by 13C–13C double quantum NMR. ACS Macro Lett. 2013;2:501–5.CrossRefGoogle Scholar
  12. 12.
    Hong YL, Chen W, Yuan S, Kang J, Miyoshi T. Chain trajectory of semicrystalline polymers as revealed by solid-state NMR spectroscopy. ACS Macro Lett. 2016;5:355–8.CrossRefGoogle Scholar
  13. 13.
    Saalwächter K. 1H multiple-quantum nuclear magnetic resonance investigations of molecular order in polymer networks: II. Intensity decay and restricted slow dynamics. J Chem Phys. 2004;120:454–664.CrossRefGoogle Scholar
  14. 14.
    Saalwächter K, Heuer A. Chain dynamics in elastomers as investigated by proton multiple-quantum NMR. Macromolecules. 2006;39:3291–303.CrossRefGoogle Scholar
  15. 15.
    Sommer JU, Chassé W, Valentín JL, Saalwächter K. Effect of excluded volume on segmental orientation correlations in polymer chains. Phys Rev E. 2008;78:051803.CrossRefGoogle Scholar
  16. 16.
    Chassé W, Saalwächter K, Sommer JU. Thermodynamics of swollen networks as reflected in segmental orientation correlations. Macromolecules. 2012;45:5513–23.CrossRefGoogle Scholar
  17. 17.
    Saalwächter K, Herrero B, López-Manchado MA. Chain order and crosslink density of elastomers as investigated by proton multiple-quantum NMR. Macromolecules. 2005;38:9650–60.CrossRefGoogle Scholar
  18. 18.
    Syed IH, Stratmann P, Hempel G, Klüppel M, Saalwächter K. Entanglements, Defects and Inhomogeneities in Nitrile Butadiene Rubbers: macroscopic versus microscopic properties. Macromolecules. 2016;49:9004. Accepted.CrossRefGoogle Scholar
  19. 19.
    Malmierca MA, González-Jiménez A, Mora-Barrantes I, Posadas P, Rodríguez A, Ibarra L, et al. Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1H low-field NMR. Macromolecules. 2014;47:5655–67.CrossRefGoogle Scholar
  20. 20.
    Saalwächter K, Lange F, Matyjaszewski K, Huang CF, Graf R. BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson. 2011;212:204–15.CrossRefGoogle Scholar
  21. 21.
    Saalwächter K, Klüppel M, Luo H, Schneider H. Chain order in filled SBR elastomers: a proton multiple-quantum NMR study. Appl Magn Reson. 2004;27:401–17.CrossRefGoogle Scholar
  22. 22.
    Baum J, Pines A. NMR studies of clustering in solids. J Am Chem Soc. 1986;108:7447–54.CrossRefGoogle Scholar
  23. 23.
    Chassé W, Valentín JL, Genesky GD, Cohen C, Saalwächter K. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. J Chem Phys. 2011;134:044907.CrossRefGoogle Scholar
  24. 24.
    Abragam A. The principles of nuclear magnetism. Oxford: Oxford University Press; 1961.Google Scholar
  25. 25.
    Whittaker AK. The structure of polymer networks. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2008. p. 583–9.Google Scholar
  26. 26.
    Valentín JL, Posadas P, Fernández-Torres A, Malmierca MA, González L, Chassé W, et al. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules. 2010;43:4210–22.CrossRefGoogle Scholar
  27. 27.
    Saleesung T, Reichert D, Saalwächter K, Sirisinha C. Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer. 2015;56:309–17.CrossRefGoogle Scholar
  28. 28.
    Lange F, Schwenke K, Kurakazu M, Akagi Y, Chung U, Lang M, et al. Connectivity and structural defects in model hydrogels: a combined proton NMR and monte carlo simulation study. Macromolecules. 2011;44:9666–74.CrossRefGoogle Scholar
  29. 29.
    Schlögl S, Trutschel ML, Chassé W, Riess G, Saalwächter K. Entanglement effects in elastomers: macroscopic vs microscopic properties. Macromolecules. 2014;47:2759–73.CrossRefGoogle Scholar
  30. 30.
    Saalwächter K, Kleinschmidt F, Sommer JU. Swelling heterogeneities in end-linked model networks: a combined proton multiple-quantum NMR and computer simulation study. Macromolecules. 2004;37:8556–68.CrossRefGoogle Scholar
  31. 31.
    Samiullah MH, Reichert D, Zinkevich T, Kressler J. NMR characterization of PEG networks synthesized by CuAAC using reactive oligomers. Macromolecules. 2013;46:6922–30.CrossRefGoogle Scholar
  32. 32.
    Giuliani JR, Gjersing EL, Chinn SC, Jones TV, Wilson TS, Alviso CT, et al. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by 1H multiple quantum NMR. J Phys Chem B. 2007;111:12977–84.CrossRefGoogle Scholar
  33. 33.
    Maxwell RS, Chinn SC, Alviso CT, Harvey CA, Giuliani JR, et al. Quantification of radiation induced crosslinking in a commercial, toughened silicone rubber, TR55 by 1H MQ-NMR. Polym Degrad Stab. 2009;94:456–64.CrossRefGoogle Scholar
  34. 34.
    Mayer BP, Lewicki JP, Weisgraber TH, Small W, Chinn SC, Maxwell RS. Linking network microstructure to macroscopic properties of siloxane elastomers using combined nuclear magnetic resonance and mesoscale computational modeling. Macromolecules. 2011;44:8106–15.CrossRefGoogle Scholar
  35. 35.
    Che J, Toki S, Valentín JL, Brasero J, Nimpaiboon A, Rong L, et al. Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules. 2012;45:6491–503.CrossRefGoogle Scholar
  36. 36.
    Hernández M, Valentín JL, López-Manchado MA, Ezquerra TA. Influence of the vulcanization system on the dynamics and structure of natural rubber: comparative study by means of broadband dielectric spectroscopy and solid-state NMR spectroscopy. Eur Polym J. 2015;68:90–103.CrossRefGoogle Scholar
  37. 37.
    Gabrielle B, Gomez E, Korb JP. Probing rubber cross-linking generation of industrial polymer networks at nanometer scale. J Phys Chem B. 2016;120:5581–9.CrossRefGoogle Scholar
  38. 38.
    Dibbanti MK, Mauri M, Mauri L, Medaglia G, Simonutti R. Probing small network differences in sulfur-cured rubber compounds by combining nuclear magnetic resonance and swelling methods. J Appl Polym Sci. 2015;132:42700.CrossRefGoogle Scholar
  39. 39.
    Valentín JL, Carretero-González J, Mora-Barrantes I, Chassé W, Saalwächter K. Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber. Macromolecules. 2008;41:4717–29.CrossRefGoogle Scholar
  40. 40.
    Valentín JL, Mora-Barrantes I, Carretero-González J, López-Manchado MA, Sotta P, Long DR, et al. Novel experimental approach to evaluate filler–elastomer interactions. Macromolecules. 2010;43:334–46.CrossRefGoogle Scholar
  41. 41.
    Cohen-Addad JP, Domard M, Lorentz G, Herz J. Polymeric gels. NMR study of elementary chain swelling. Effect of trapped topological constraints. J Physique. 1984;45:575–86.CrossRefGoogle Scholar
  42. 42.
    Cohen-Addad JP. NMR and fractal properties of polymeric liquids and gels. Prog Nucl Magn Reson Spectrosc. 1993;25:1–316.CrossRefGoogle Scholar
  43. 43.
    Cohen-Addad JP. Polymeric-gel swelling: NMR evidence for the c theorem. Phys Rev B. 1993;48:1287–90.CrossRefGoogle Scholar
  44. 44.
    Cohen-Addad JP. NMR in dry or swollen temporary or permanent networks. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2008. p. 541–3.Google Scholar
  45. 45.
    Chassé W, Schlögl S, Riess G, Saalwächter K. Inhomogeneities and local chain stretching in partially swollen networks. Soft Matter. 2013;9:6943–54.CrossRefGoogle Scholar
  46. 46.
    de Gennes PG. Scaling concepts in polymer physics. Ithaca: Cornell University Press; 1979.Google Scholar
  47. 47.
    Saalwächter K, Chassé W, Sommer JU. Structure and swelling of polymer networks: insights from NMR. Soft Matter. 2013;9:6587–93.CrossRefGoogle Scholar
  48. 48.
    Chassé W, Lang M, Sommer JU, Saalwächter K. Cross-link density estimation of PDMS networks with precise consideration of networks defects. Macromolecules. 2012;45:899–912.CrossRefGoogle Scholar
  49. 49.
    Höpfner J, Guthausen G, Saalwächter K, Wilhelm M. Network structure and inhomogeneities of model and commercial polyelectrolyte hydrogels as investigated by low-field proton NMR techniques. Macromolecules. 2014;47:4251–65.CrossRefGoogle Scholar
  50. 50.
    Wu B, Chassé W, Peters R, Brooijmans T, Dias AA, Heise A, et al. Network structure in acrylate systems: effect of junction topology on cross-link density and macroscopic gel properties. Macromolecules. 2016;49:6531–40.CrossRefGoogle Scholar
  51. 51.
    Deloche B, Samulski ET. Short-range nematic-like orientational order in strained elastomers: a deuterium magnetic resonance study. Macromolecules. 1981;14:575–81.CrossRefGoogle Scholar
  52. 52.
    Gronski W, Stadler R, Maldaner Jacobi M. Evidence of nonaffine and inhomogeneous deformation of network chains in strained rubber-elastic networks by deuterium magnetic resonance. Macromolecules. 1984;17:741–8.CrossRefGoogle Scholar
  53. 53.
    Pérez-Aparicio R, Schiewek M, Valentín JL, Schneider H, Long DR, Saphiannikova M, et al. Local chain deformation and overstrain in reinforced elastomers: an NMR study. Macromolecules. 2013;46:5549–60.CrossRefGoogle Scholar
  54. 54.
    Ott M, Pérez-Aparicio R, Schneider H, Sotta P, Saalwächter K. Microscopic study of chain deformation and orientation in uniaxially strained polymer networks: NMR results versus different network models. Macromolecules. 2014;47:7597–611.CrossRefGoogle Scholar
  55. 55.
    Naumova A, Tschierske C, Saalwächter K. Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility. Solid State Nucl Magn Reson. 2017;82–83:22–28.CrossRefGoogle Scholar
  56. 56.
    Zhang R, Yan T, Lechner BD, Schröter K, Liang Y, Li B, et al. Heterogeneity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber. Macromolecules. 2013;46:1841–50.CrossRefGoogle Scholar
  57. 57.
    Zhang R, Yu S, Chen S, Wu Q, Chen T, Sun P, et al. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR. J Phys Chem B. 2014;118:1126–37.CrossRefGoogle Scholar
  58. 58.
    Martin-Gallego M, González-Jiménez A, Verdejo R, López-Manchado MA, Valentín JL. Epoxy resin curing reaction studied by proton multiple-quantum NMR. J Polym Sci B. 2015;53:1324–32.CrossRefGoogle Scholar
  59. 59.
    Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Clarendon Press; 1986.Google Scholar
  60. 60.
    Rubinstein M, Colby RH. Polymer physics. New York: Oxford University Press; 2003.Google Scholar
  61. 61.
    de Gennes PG. Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys. 1971;55:572–9.CrossRefGoogle Scholar
  62. 62.
    Ball RC, Callaghan PT, Samulski ET. A simplified approach to the interpretation of nuclear spin correlations in entangled polymeric liquids. J Chem Phys. 1997;106:7352–61.CrossRefGoogle Scholar
  63. 63.
    Vaca Chávez F, Saalwächter K. NMR Observation of entangled polymer dynamics: tube model predictions and constraint release. Phys Rev Lett. 2010;104:198305.CrossRefGoogle Scholar
  64. 64.
    Vaca Chávez F, Saalwächter K. Time-domain NMR observation of entangled polymer dynamics: universal behavior of flexible homopolymers and applicability of the tube model. Macromolecules. 2011;44:1549–59.CrossRefGoogle Scholar
  65. 65.
    Vaca Chávez F, Saalwächter K. Time-domain NMR observation of entangled polymer dynamics: analytical theory of signal functions. Macromolecules. 2011;44:1560–9.CrossRefGoogle Scholar
  66. 66.
    Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. London: Academic Press; 1994.Google Scholar
  67. 67.
    Horii F. Dynamics of amorphous polymers. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2008. p. 607–13.Google Scholar
  68. 68.
    Franz C, Lange F, Golitsyn Y, Hartmann-Azanza B, Steinhart M, Krutyeva M, et al. Chain dynamics and segmental orientation in polymer melts confined to nanochannels. Macromolecules. 2016;49:244–56.CrossRefGoogle Scholar
  69. 69.
    Anderson PW, Weiss PR. Exchange narrowing in paramagnetic resonance. Rev Mod Phys. 1953;25:269–76.CrossRefGoogle Scholar
  70. 70.
    Kimmich R. NMR tomography, diffusometry, relaxometry. Berlin: Springer; 1997.Google Scholar
  71. 71.
    Herrmann A, Novikov VN, Rössler EA. Dipolar and bond vector correlation function of linear polymers revealed by field cycling 1H NMR: crossover from rouse to entanglement regime. Macromolecules. 2009;42:2063–8.CrossRefGoogle Scholar
  72. 72.
    Mordvinkin A, Saalwächter K. Microscopic observation of segmental orientation autocorrelation functions in entangled and constrained polymer melts. J Chem Phys. 2017;146:094902.Google Scholar
  73. 73.
    Dollase T, Graf R, Heuer A, Spiess HW. Local order and chain dynamics in molten polymer-blocks revealed by proton double-quantum NMR. Macromolecules. 2001;34:298–309.CrossRefGoogle Scholar
  74. 74.
    Herrmann A, Kresse B, Wohlfahrt M, Bauer I, Privalov AF, Kruk D, et al. Mean square displacements and reorientational correlation function in entangled polymer melts revealed by field cycling 1H and 2H NMR relaxometry. Macromolecules. 2012;45:6516–26.CrossRefGoogle Scholar
  75. 75.
    Wang T, Widanapathirana L, Zhao Y, Hong M. Aggregation and dynamics of oligocholate transporters in phospholipid bilayers revealed by solid-state NMR spectroscopy. Langmuir. 2012;28:17071–8.CrossRefGoogle Scholar
  76. 76.
    Kimmich R, Fatkullin N. Polymer chain dynamics and NMR. Adv Polym Sci. 2004;170:1–113.Google Scholar
  77. 77.
    Papon A, Saalwächter K, Schäler K, Guy L, Lequeux F, Montes H. Low-Field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecules. 2011;4:913–22.CrossRefGoogle Scholar
  78. 78.
    Papon A, Saalwächter K, Lequeux F, Montes H. Tg gradient in nanocomposites: evidence by NMR and DSC. Phys Rev Lett. 2012;108:065702.CrossRefGoogle Scholar
  79. 79.
    Şerbescu A, Saalwächter K. Particle-induced network formation in linear PDMS filled with silica. Polymer. 2009;50:5434–42.CrossRefGoogle Scholar
  80. 80.
    Kim SY, Meyer HW, Saalwächter K, Zukoski C. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules. 2012;45:4225–37.CrossRefGoogle Scholar
  81. 81.
    Lorthioir C, Khalil M, Wintgens V, Amiel C. Segmental motions of poly(ethylene glycol) chains adsorbed on laponite platelets in clay-based hydrogels: a NMR investigation. Langmuir. 2012;28:7859–71.CrossRefGoogle Scholar
  82. 82.
    Schäler K, Roos M, Micke P, Golitsyn Y, Seidlitz A, Thurn-Albrecht T, et al. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl Magn Reson. 2015;72:50–63.CrossRefGoogle Scholar
  83. 83.
    Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM. Rubber – filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules. 2011;44:4887–900.CrossRefGoogle Scholar
  84. 84.
    Mujtaba A, Keller M, Ilisch S, Radusch HJ, Thurn-Albrecht T, Saalwächter K, et al. Mechanical properties and cross-link density of styrene–butadiene model composites containing fillers with bimodal particle size distribution. Macromolecules. 2012;45:6604–15.CrossRefGoogle Scholar
  85. 85.
    Gabrielle B, Lorthioir C, Lauprêtre F. Thermal aging of interfacial polymer chains in ethylene-propylene-diene terpolymer/aluminum hydroxide composites: solid-state NMR study. J Phys Chem B. 2011;115:12392–400.CrossRefGoogle Scholar
  86. 86.
    Mora-Barrantes I, Rodríguez A, Ibarra L, González L, Valentín JL. Overcoming the disadvantages of fumed silica as filler in elastomer composites. J Mater Chem. 2011;21:7381–92.CrossRefGoogle Scholar
  87. 87.
    Strobl G. The physics of polymers. 3rd revised ed. Berlin: Springer; 2007.Google Scholar
  88. 88.
    Lorthioir C, Deloche B. Heterogeneous behavior of free chain-ends in a lamellar diblock copolymer: segmental dynamics and ordering, as probed by 2H solid-state NMR. Colloid Polym Sci. 2014;292:1841–51.CrossRefGoogle Scholar
  89. 89.
    Ok S, Steinhart M, Şerbescu A, Franz C, Vaca Chávez F, Saalwächter K. Confinement effects on chain dynamics and local chain order in entangled polymer melts. Macromolecules. 2010;43:4429–34.CrossRefGoogle Scholar
  90. 90.
    Hofmann M, Herrmann A, Ok S, Franz C, Kruk D, Saalwächter K, et al. Polymer dynamics of polybutadiene in nanoscopic confinement as revealed by field cycling 1H NMR. Macromolecules. 2011;44:4017–21.CrossRefGoogle Scholar
  91. 91.
    Lange F, Judeinstein P, Franz C, Hartmann-Azanza B, Ok S, Steinhart M, et al. Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett. 2015;4:561–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physik – NMRMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations