Advertisement

Molecular Diffusion in Polysaccharide Gels

  • Qiuhua Zhao
  • Yun Zhou
  • Faith B. A. Descallar
  • Shingo Matsukawa
Reference work entry

Abstract

The basic theory and experimental methods used for diffusion measurements by pulsed field gradient NMR are described. Experimental results for the diffusion and NMR relaxation times of solutions and gels of agar, agarose, and carrageenans are presented and analyzed to provide physical pictures describing the gelation mechanism and network structures. Relaxation times for the polysaccharide chains gave information on the tumbling motions of the chains, and the diffusion coefficients of probe molecules in the polysaccharide gels provided information on the translational mobility of molecules, used to infer the structure of the gel network. By comparing the NMR results with the results obtained using other experimental methods, such as dynamic rheological measurements and DSC, a clear picture emerges of the gelation mechanism. This mechanism describes the microscopic events of aggregation, polymer immobilization, and changes in probe diffusion, as well as macroscopic (bulk) events, namely, gelation. The hydrodynamic shielding length, which represents the mesh size of the network, is a parameter within the mean field hydrodynamic approach that determines the D/D0 of probe molecules and is discussed in detail and used to describe the evolving structure of the gel network.

Keywords

Agarose Carrageenan NMR relaxation times Gradient NMR Diffusion coefficient Hydrodynamic screening length 

References

  1. 1.
    Ablett S, Clark AH, Rees DA. Assessment of the flexibilities of carbohydrate polymers by proton-NMR relaxation and line shape analysis. Macromolecules. 1982;15(2):597–602.CrossRefGoogle Scholar
  2. 2.
    Arnott S, Fulmer A, Scott WE, Dea ICM, Moorhouse R, Rees DA. The agarose double helix and its function in agarose gel structure. J Mol Biol. 1974;90:269–84.CrossRefGoogle Scholar
  3. 3.
    Aymard P, Martin D, Plucknett K, Foster T, Clark A, Norton L. Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers. 2001;59:131–44.CrossRefGoogle Scholar
  4. 4.
    Bieze TWN, Van der Maarel JRC, Eisenbach CD, Leyte JC. Polymer dynamics in aqueous poly(ethylene oxide) solutions. An NMR study. Macromolecules. 1994;27:1355–66.CrossRefGoogle Scholar
  5. 5.
    Brenner T, Tuvikene R, Parker A, Matsukawa S, Nishinari K. Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll. 2014;39:272–9.CrossRefGoogle Scholar
  6. 6.
    Callaghan PT. Principles of nuclear magnetic resonance microscopy. Oxford: Clarendon Press; 1991. p. 93.Google Scholar
  7. 7.
    Cameron RE, Jalil MA, Donald AM. Diffusion of bovine serum-albumin in amylopectin gels measured using Fourier-Transform Infrared Microspectroscopy. Macromolecules. 1994;27:2708–13.CrossRefGoogle Scholar
  8. 8.
    Cukier R. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules. 1984;17:252–5.CrossRefGoogle Scholar
  9. 9.
    Dai B, Matsukawa S. NMR studies of the gelation mechanism and molecular dynamics in agar solutions. Food Hydrocoll. 2012;26:181–6.CrossRefGoogle Scholar
  10. 10.
    Dai B, Matsukawa S. Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H-NMR. Carbohydr Res. 2013;365:38–45.CrossRefGoogle Scholar
  11. 11.
    De Gennes PG. Dynamics of entangled polymer solution II. Inclusion of hydrodynamic interaction. Macromolecules. 1976;9:594–8.CrossRefGoogle Scholar
  12. 12.
    Déléris I, Andriot I, Gobet M, Moreau C, Souchon I, Guichard E. Determination of aroma compound diffusion in model food systems: comparison of macroscopic and microscopic methodologies. J Food Eng. 2010;100:557–66.CrossRefGoogle Scholar
  13. 13.
    Doi M, Edwards SF. The theory of polymer dynamics. 1st ed. Oxford, UK: Oxford University Press; 1986. (Chapter 3).Google Scholar
  14. 14.
    Du L, Brenner T, Xie J, Liu Z, Wang S, Matsukawa S. Gelation of iota/kappa carrageenan mixtures. In: Gum & stabilizer for the food industry, Bath, UK: Royal Society of Chemistry. vol. 18; 2016. p. 47–55.Google Scholar
  15. 15.
    Foord SA, Atkins EDY. New x-ray diffraction results from agarose: extended helix structures and implications for gelation mechanism. Biopolymers. 1989;28:1345–65.CrossRefGoogle Scholar
  16. 16.
    Gamini A, Toffanin R, Murano E, Rizzo R. Hydrogen-bonding and conformation of agarose in methyl sulfoxide and aqueous solutions investigated by 1H and 13C NMR spectrometry. Carbohydr Res. 1997;304:293–302.CrossRefGoogle Scholar
  17. 17.
    Guenet JM, Brulet A, Rochas C. Effect of sodium sulfate on the gelling behavior of agarose and water structure inside the gel networks. Int J Biol Macromol. 1993;15:131–2.CrossRefGoogle Scholar
  18. 18.
    Hu B, Du L, Matsukawa S. NMR study on the network structure of a mixed gel of kappa and iota carrageenans. Carbohydr Polym. 2016;150:57–64.CrossRefGoogle Scholar
  19. 19.
    Johnson Jr CS. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc. 1999;34:203–56.CrossRefGoogle Scholar
  20. 20.
    Karger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson. 1988;12:1.CrossRefGoogle Scholar
  21. 21.
    Labropoulos K, Niesz D, Danforth S, Kevrekidis P. Dynamic rheology of agar gels: theory and experiments. Part I: development of a rheological model. Carbohydr Polym. 2002;50:393–406.CrossRefGoogle Scholar
  22. 22.
    Matsukawa S, Ando I. A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR. Macromolecules. 1996;29(22):7136–40.CrossRefGoogle Scholar
  23. 23.
    Matsukawa S, Ando I. Study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR 2. Intermolecular hydrogen-bond interaction between probe polymer and network polymer in (N,N-dimethylacrylamide-acrylic acid) copolymer gel systems. Macromolecules. 1997;30(26):8310–3.CrossRefGoogle Scholar
  24. 24.
    Matsukawa S, Ando I. Study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1H NMR. 3. Stearyl itaconamide/N,N-dimethylacrylamide copolymer gels. Macromolecules. 1999;32(6):1865–71.CrossRefGoogle Scholar
  25. 25.
    Matsukawa S, Sagae D, Mogi A. Molecular diffusion in polysaccharide gel systems as observed by NMR. Progr Colloid Polym Sci. 2009;136:171–6.Google Scholar
  26. 26.
    Mohammed ZH, Hember MWN, Richardson RK, Morris ER. Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr Polym. 1998;36:15–26.CrossRefGoogle Scholar
  27. 27.
    Murtagh J, Thomas JK. Mobility and reactivity in colloidal aggregates with motion restricted by polymerization. Faraday Discuss Chem Soc. 1986;81:127–36.CrossRefGoogle Scholar
  28. 28.
    Norton IT, Goodall DM, Austen KRJ, Morris ER. Dynamics of molecular organization in agarose sulphate. Biopolymers. 1986;25:1009–29.CrossRefGoogle Scholar
  29. 29.
    Nussinovitch A. Hydrocolloid applications: gum technology in the food and other industries. 1st ed. London: Chapman & Hall; 1997. (Chapter 1).CrossRefGoogle Scholar
  30. 30.
    Phillies GDJ, Malone C, Ullmann K, Ullmann GS, Rollings J, Yu L. Probe diffusion in solutions of log-chain polyelectrolytes. Macromolecules. 1987;22(9):2280.CrossRefGoogle Scholar
  31. 31.
    Price WS. Pulsed field gradient NMR as a tool for studying translational diffusion, part I. Basic theory. Concepts Magn Reson. 1997;9:299–336.CrossRefGoogle Scholar
  32. 32.
    Price WS. Diffusion and its measurements. In: NMR study of translational motion. 1st ed. New York: Cambridge University Press; 2009. p. 1–68.CrossRefGoogle Scholar
  33. 33.
    Ramzi M, Rochas C, Guenet JM. Structure-properties relation for agarose thermoreversible gels in binary solvents. Macromolecules. 1998;31:6106–11.CrossRefGoogle Scholar
  34. 34.
    Rees DA, Steele IW, Williamson FB. Conformational analysis of polysaccharides. III. The relation between stereochemistry and properties of some natural polysaccharide sulfates (1). J Polym Sci C Polym Symp. 1969;28(1):261–76.CrossRefGoogle Scholar
  35. 35.
    Shimizu M, Brenner T, Liao R, Matsukawa S. Diffusion of probe polymer in gellan gum solutions during gelation process studied by gradient NMR. Food Hydrocoll. 2012;26:28–32.CrossRefGoogle Scholar
  36. 36.
    Walderhaug H, Söderman O, Topgaard D. Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc. 2010;56:406–25.CrossRefGoogle Scholar
  37. 37.
    Zhang Q, Matsukawa S, Watanabe T. Theoretical analysis of water 1H T2 based on chemical exchange and polysaccharide mobility during gelation. Food Hydrocoll. 2004;18:441–9.CrossRefGoogle Scholar
  38. 38.
    Zhao Q, Matsukawa S. Estimation of hydrodynamic screening length in κ-carrageenan aqueous system through probe diffusion using gradient NMR. Polym J. 2012;44:901–6.CrossRefGoogle Scholar
  39. 39.
    Zhao Q, Brenner T, Matsukawa S. Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. Carbohydr Polym. 2013;95:458–64.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qiuhua Zhao
    • 1
  • Yun Zhou
    • 1
  • Faith B. A. Descallar
    • 2
  • Shingo Matsukawa
    • 2
  1. 1.East China Normal UniversityMinhang Qu, Shanghai ShiChina
  2. 2.Tokyo University of Marine Science and TechnologyTokyoJapan

Personalised recommendations