Polymer Blends and Composites

  • Atsushi AsanoEmail author
Reference work entry


In this chapter, first, the investigations of interpolymer interaction, miscibility, and composition change during phase separation for polymer blends are addressed. The hydrogen bonding between polymers is one of key interaction among the interpolymer interactions, causing the apparent lineshape change on 13C NMR spectrum. Based on the effects of 1H spin diffusion on 1H spin-lattice relaxation T1, the miscibility on several nm or several tens of nm level is discussed. The close proximity between the component polymers revealed by two-dimensional 1H-1H exchange NMR is shown. Similarly, the phase separation process is discussed by the 1H spin diffusion behavior on T1.

Second, the interaction between inorganic fillers and polymer and stability of the organic modifier treated on the clay surface for polymer nanocomposites are described. The interaction between filler surface and polymer is detected by two-dimensional heteronuclear correlation NMR measurement. The stability of the organic modifiers on the clay surface is clarified by the simple 1H MAS spectra. The paramagnetic source naturally containing in clay obscures the NMR signal, but it is useful to evaluate the stability of the organic modifiers.


Miscibility Phase separation Interpolymer interaction Spin diffusion Spin-lattice relaxation Spinodal decomposition Montmorillonite Hectorite HETCOR CRAMPS Organic modifiers Polymer blend Nanocomposite 


  1. 1.
    Asano A, Takegoshi K. Polymer blends and miscibility, Chapter 10. In: Ando I, Asakura T, editors. Solid state NMR of polymers. The Netherlands: Elsevier Science BV; 1998. p. 351–414.CrossRefGoogle Scholar
  2. 2.
    Asano A, Eguchi M, Shimizu M, Kurotsu T. Miscibility and molecular motion of PMAA/PVAc blends investigated by high-resolution solid state CPMAS 13C NMR. Macromolecules. 2002;35:8819–24.CrossRefGoogle Scholar
  3. 3.
    Asano A. Hydrogen-bond interaction of PMAA/PVAc blends: a natural abundant two-dimensional 13C exchange NMR investigation. Polym J. 2004;36:23–7.CrossRefGoogle Scholar
  4. 4.
    Heffner A, Mirau PA. Identification of intermolecular interactions in 1,2-polybutadiene/polyisoprene blends. Macromolecules. 1994;27:7283–6.CrossRefGoogle Scholar
  5. 5.
    White JL, Mirau PA. Probing miscibility and intermolecular interactions in solid polymer blends using the nuclear Overhauser effect. Macromolecules. 1993;26:3049–54.CrossRefGoogle Scholar
  6. 6.
    Mirau PA, White JL. Solid-state NMR studies of intermolecular interactions in solid polymer blends. Magn Reson Chem. 1994;32:S23–9.CrossRefGoogle Scholar
  7. 7.
    Feng H, Feng Z, Ruan H, Shen L. A high-resolution solid-state NMR study of the miscibility, morphology, and toughening mechanism of polystyrene with poly(2,6-dimethyl-1,4-phenylene oxide) blends. Macromolecules. 1992;25:5981–5.CrossRefGoogle Scholar
  8. 8.
    Wolak J, Jia X, Gracz H, Stejskal EO, White JL, Wachowicz M, Jurga S. Polyolefin miscibility: solid-state NMR investigation of phase behavior in saturated hydrocarbon blends. Macromolecules. 2003;36:4844–50.CrossRefGoogle Scholar
  9. 9.
    Ngai KL, Roland CM. Unusual component dynamics in poly(ethylene oxide)/poly(methyl methacrylate) blends as probed by deuterium NMR. Macromolecules. 2004;37:2817–22.CrossRefGoogle Scholar
  10. 10.
    Takegoshi K, Hikichi K. Effects of blending on local chain dynamics and glass transition: polystyrene/poly(vinyl methyl ether) blends as studied by high-resolution solid-state 13C nuclear magnetic resonance spectroscopy. J Chem Phys. 1991;94:3200–6.CrossRefGoogle Scholar
  11. 11.
    Menestrel CLe, Kenwright AM, Sergot P, Lauprêtre F, Monnerie L. Carbon-13 NMR investigation of local dynamics in compatible polymer blends. Macromolecules. 1992;25:3020–6.CrossRefGoogle Scholar
  12. 12.
    VanderHart DL, Feng Y, Han CC, Weiss RA. Morphological characterization of blends of metal-sulfonated poly(styrene) and a methylated poly(amide) by solid state NMR. Macromolecules. 2000;33:2206–27.CrossRefGoogle Scholar
  13. 13.
    Linder M, Henrichs PM, Hewitt JM, Massa DJ. Use of carbon-carbon nuclear spin diffusion for the study of the miscibility of polymer blends. J Chem Phys. 1985;82:1585–98.CrossRefGoogle Scholar
  14. 14.
    Asano A, Takegoshi K, Hikichi K. 13C c.p./m.a.s. n.m.r. study on the miscibility and phase separation of a polystyrene/poly(vinyl methyl ether) blend. Polymer. 1994;35:5630–6.CrossRefGoogle Scholar
  15. 15.
    Miyoshi T, Takegoshi K, Hikichi K. High-resolution solid-state 13C nuclear magnetic resonance study of a polymer complex: poly(methacrylic acid)/poly(ethylene oxide). Polymer. 1996;37:11–8.CrossRefGoogle Scholar
  16. 16.
    Miyoshi T, Takegoshi K, Hikichi K. High-resolution solid state 13C n.m.r. study of the interpolymer interaction, morphology and chain dynamics of the poly(acrylic acid)/poly(ethylene oxide). Polymer. 1997;38:2315–20.CrossRefGoogle Scholar
  17. 17.
    Stejskal EO, Schaefer J, Sefcik MD, Mckay RA. Magic-angle carbon-13 nuclear magnetic resonance study of the compatibility of solid polymeric blends. Macromolecules. 1981;14:275–9.CrossRefGoogle Scholar
  18. 18.
    Asano A, Nishioka M, Takahashi Y, Kato A, Hikasa S, Iwabuki H, Nagata K, Sato H, Hasegawa T, Sawabe H, Arao M, Suda T, Isoda A, Mukai M, Ishikawa D, Izumi T. High impact properties of polyketone/polyamide-6 alloys induced by characteristic morphology and water absorption. Macromolecules. 2009;42:9506–14.CrossRefGoogle Scholar
  19. 19.
    Asano A, Kurotu T. 1H spin diffusion in PMLG/PVP blends as studied by CP/MAS 13C NMR. J Mol Struct. 1998;441:129–35.CrossRefGoogle Scholar
  20. 20.
    Clauss J, Schmidt-Rohr K, Spiess HW. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polymer. 1993;44:1–17.CrossRefGoogle Scholar
  21. 21.
    Mirau PA. Chapter 4. In: A practical guide to understanding the NMR of polymers. Hoboken: Wiley; 2005. p. 248–335.Google Scholar
  22. 22.
    Hou S-S, Chen Q, Schmidt-Rohr K. Two-dimensional 13C NMR with 1H spin diffusion for characterizing domain sizes in unlabeled polymers. Macromolecules. 2004;37:1999–2001.CrossRefGoogle Scholar
  23. 23.
    Jia X, Wang X, Tonelli AE, White JL. Two-dimensional spin-diffusion NMR reveals differential mixing in biodegradable polymer blends. Macromolecules. 2005;38:2775–80.CrossRefGoogle Scholar
  24. 24.
    Amoureux J-P, Hu B, Trébosc J. Enhanced resolution in proton solid-state NMR with very-fast MAS experiments. J Magn Reson. 2008;193:305–7.CrossRefGoogle Scholar
  25. 25.
    Mafra L, Gomes JRB, Trébosc J, Rocha J, Amoureux J-P. 1H-1H double-quantum CRAMPS NMR at very-fast MAS (νR = 35 kHz): a resolution enhancement method to probe 1H-1H proximities in solids. J Magn Reson. 2009;196:88–91.CrossRefGoogle Scholar
  26. 26.
    Nishiyama Y, Frey MH, Mukasa S, Utsumi H. 13C solid-state NMR chromatography by magic angle spinning 1H T1 relaxation ordered spectroscopy. J Magn Reson. 2010;202:135–9.CrossRefGoogle Scholar
  27. 27.
    Sun P, Dang Q, Li B, Chen T, Wang Y, Lin H, Jin Q, Ding D, An-C S. Mobility, miscibility, and microdomain structure in nanostructured thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers characterized by solid-state NMR. Macromoleules. 2005;38:5654–67.CrossRefGoogle Scholar
  28. 28.
    Wang X, Gu Q, Sun Q, Zhou D, Sun P, Xue G. Characterization of polymer compatibility by 1H dipolar filter solid-state NMR under fast magic angle spinning. Macromolecules. 2007;40:9018–25.CrossRefGoogle Scholar
  29. 29.
    He X, Liu Y, Zhang R, Wu Q, Chen T, Sun P. Unique interphase and cross-linked network controlled by different miscible blocks in nanostructured epoxy/block copolymer blends characterized by solid-state NMR. J Phys Chem C. 2014;118:13285–99.CrossRefGoogle Scholar
  30. 30.
    VanderHart DL, Prabhu VM, Lavery KA, Dennis CL, Rao AB, Lin EK. Thin-film solid-state proton NMR measurements using a synthetic mica substrate: polymer blends. J Magn Reson. 2009;201:100–10.CrossRefGoogle Scholar
  31. 31.
    Nieuwendaal RC, Snyder CR, Kline RJ, Lin EK, VanderHart DL, DeLongchamp DM. Measuring the extent of phase separation in poly-3-hexylthiophene/phenyl-C61-butyric acid methyl ester photovoltaic blends with 1H spin diffusion NMR spectroscopy. Chem Mater. 2010;22:2930–6.CrossRefGoogle Scholar
  32. 32.
    Nieuwendaal RC, Ro HW, Germack DS, Kline RJ, Toney MF, Chan CK, Agrawal A, Gundlach D, VanderHart DL, Delongchamp DM. Measuring domain sizes and compositional heterogeneities in P3HT-PCBM bulk heterojunction thin films with 1H spin diffusion NMR spectroscopy. Adv Funct Mater. 2012;22:1255–66.CrossRefGoogle Scholar
  33. 33.
    Asano A, Takegoshi K, Hikichi K. Solid-state NMR study of miscibility and phase-separation of polymer blend: polycarbonate/poly(methyl methacrylate). Polym J. 1992;24:555–62.CrossRefGoogle Scholar
  34. 34.
    Asano A. Polymer blends. In: Webb GA, editor. Modern magnetic resonance part I. Dordrecht: Springer; 2006. p. 627–31.Google Scholar
  35. 35.
    Miyoshi T, Takegoshi K, Terao T. 129Xe n.m.r, study of free volume and phase separation of the polystyrene/poly(vinyl methyl ether) blend. Polymer. 1997;38:5475–80.CrossRefGoogle Scholar
  36. 36.
    Pinnavaia TJ, Beall GW. Polymer-clay nanocomposites. Wiley: Chichester; 2000.Google Scholar
  37. 37.
    VanderHart DL, Asano A, Gilman JW. NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/clay nanocomposites. Macromolecules. 2001;34:3819–22.CrossRefGoogle Scholar
  38. 38.
    VanderHart DL, Asano A, Gilman JW. Solid state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chem Mater. 2001;13:3781–95.CrossRefGoogle Scholar
  39. 39.
    VanderHart DL, Asano A, Gilman JW. Solid state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers. Chem Mater. 2001;13:3796–809.CrossRefGoogle Scholar
  40. 40.
    Bourbigot S, VanderHart DL, Gilman JW, Awad WH, Davis RD, Morgan AB, Wilkie CA. Investigation of nanodispersion in polystyrene–montmorillonite nanocomposites by solid-state NMR. J Polm Sci Part B: Polym Phys. 2003;41:3188–213.CrossRefGoogle Scholar
  41. 41.
    Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter HH, Xue G. Critical effect of segmental dynamics in polybutadiene/clay nanocomposites characterized by solid state 1H NMR spectroscopy. J Phys Chem C. 2014;118:5606–14.CrossRefGoogle Scholar
  42. 42.
    Hou S-S, Bonagamba TJ, Beyer FL, Madison PH, Schmidt-Rohr K. Clay intercalation of poly(styrene-ethylene oxide) block copolymers studied by two-dimensional solid-state NMR. Macromolecules. 2003;36:2769–76.CrossRefGoogle Scholar
  43. 43.
    Schmidt-Rohr K, Rawal A, Fang X-W. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling. J Chem Phys. 2007;126:054701–16.CrossRefGoogle Scholar
  44. 44.
    Rawal A, Urman K, Otaigbe JU, Schmidt-Rohr K. Detection of nanometer-scale mixing in phosphate-glass/polyamide-6 hybrids by 1H-31P NMR. Chem Mater. 2006;18:6333–8.CrossRefGoogle Scholar
  45. 45.
    Rawal A, Kong X, Meng Y, Otaigbe JU, Schmidt-Rohr K. Reduced crystallinity and mobility of nylon-6 confined near the organic-inorganic interface in a phosphate glass-rich nanocomposite detected by 1H-13C NMR. Macromolecules. 2011;44:8100–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryNational Defense AcademyYokosukaJapan

Personalised recommendations