Advertisement

Chain Trajectory of Semicrystalline Polymers as Revealed by 13C-13C Double Quantum NMR

  • Wei Chen
  • You-lee Hong
  • Shichen Yuan
  • Toshikazu Miyoshi
Reference work entry

Abstract

Chain-folding structure of semicrystalline polymers in melt- and solution-grown crystals has been debated over the past several decades. Recently, 13C-13C double quantum (DQ) NMR spectroscopy and spin dynamics simulation have been applied to trace chain trajectory of 13C-labeled polymers in melt- and solution-grown crystals. We highlight the versatile approaches of using 13C-13C DQ NMR and isotope labeling for revealing (i) chain trajectory in melt- and solution-grown crystals, (ii) conformation of the folded chains in single crystals, (iii) self-folding in the early stage of crystallization, and (iv) unfolding of the folded chains under stretching.

Keywords

13C-13C Double Quantum NMR Chain Trajectory Semicrystalline Polymer Polymer Crystallization 

Notes

Acknowledgments

This work was financially supported by the National Science Foundation (grant no. DMR-1105829 and 1408855) and a UA start-up fund.

References

  1. 1.
    Cheng SZ. Phase transitions in polymers. Boston: Elsevier; 2008.Google Scholar
  2. 2.
    Strobl G. Prog Polym Sci. 2006;31:398–442.CrossRefGoogle Scholar
  3. 3.
    Lauritzen JI, Hoffman JD. J Res Natl Bur Stand A. 1960;74A:73–102.CrossRefGoogle Scholar
  4. 4.
    Hoffman JD, Miller RL. Polymer. 1997;38:3151–212.CrossRefGoogle Scholar
  5. 5.
    Allegra G, Meille SV. Phys Chem Chem Phys. 1999;1:5179–88.CrossRefGoogle Scholar
  6. 6.
    Allegra G, Meille SV. Adv Polym Sci. 2005;191:87–135.CrossRefGoogle Scholar
  7. 7.
    Liu C, Muthukumar M. J Chem Phys. 1998;109:2356.Google Scholar
  8. 8.
    Zhang J, Muthukumar M. J Chem Phys. 2007;126:234904.CrossRefGoogle Scholar
  9. 9.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ. Phys Rev Lett. 1998;81:373–6.CrossRefGoogle Scholar
  10. 10.
    Kaji K, Nishida K, Kanaya T, Matsuba G, Konishi T, Imai M. Adv Polym Sci. 2005;191:187–240.CrossRefGoogle Scholar
  11. 11.
    Strobl G. Rev Mod Phys. 2009;81:1287–300.CrossRefGoogle Scholar
  12. 12.
    Sadler DM, Keller A. Science. 1979;203:263–5.CrossRefGoogle Scholar
  13. 13.
    Guttman CM, Dimarzio EA, Hoffman JD. Polymer. 1981;22:597–608.CrossRefGoogle Scholar
  14. 14.
    Yoon DY, Flory PJ. Polymer. 1977;18:509–13.CrossRefGoogle Scholar
  15. 15.
    Spells SJ, Sadler DM. Polymer. 1984;25:739–48.CrossRefGoogle Scholar
  16. 16.
    Zheng X, Ungar G, Spells SJ, King SM. Macromolecules. 2005;38:7201–4.CrossRefGoogle Scholar
  17. 17.
    Jing X, Krimm S. J Polym Sci Polym Phys Ed. 1982;20:1155–73.CrossRefGoogle Scholar
  18. 18.
    Jing X, Krimm S. J Polym Sci Polym Phys Ed. 1983;21:123–30.CrossRefGoogle Scholar
  19. 19.
    Reddy KR, Tashiro K, Sakurai T, Yamaguchi N. Macromolecules. 2008;41:9807–13.CrossRefGoogle Scholar
  20. 20.
    Wittman JC, Lotz B. J Polym Sci Polym Phys Ed. 1985;23:205–26.CrossRefGoogle Scholar
  21. 21.
    Kumaki J, Kawauchi T, Yashima E. J Am Chem Soc. 2005;127:5788–9.CrossRefGoogle Scholar
  22. 22.
    Mullin N, Hobbs J. Phys Rev Lett. 2011;107:197801.CrossRefGoogle Scholar
  23. 23.
    Savage RC, Mullin N, Hobbs JK. Macromolecules. 2015;48:6160–5.CrossRefGoogle Scholar
  24. 24.
    Liu X, Song Y, Feng W, Liu N, Zhang W, Zhang X. J Am Chem Soc. 2011;133:3226–9.CrossRefGoogle Scholar
  25. 25.
    Tang M, Comellas G, Rienstra CM. Acc Chem Res. 2013;46:2080–8.CrossRefGoogle Scholar
  26. 26.
    Hong M, Schmidt-Rohr K. Acc Chem Res. 2013;46:2154–63.CrossRefGoogle Scholar
  27. 27.
    Polenova T, Gupta R, Goldbourt A. Anal Chem. 2015;87:5458–69.CrossRefGoogle Scholar
  28. 28.
    Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. New York: Academic Press; 1994.Google Scholar
  29. 29.
    Hu WG, Boeffel C, Schmidt-Rohr K. Macromolecules. 1999;32:1611–9.CrossRefGoogle Scholar
  30. 30.
    Kaji H, Miura N, Schmidt-Rohr K. Macromolecules. 2003;36:6100–13.CrossRefGoogle Scholar
  31. 31.
    Miyoshi T, Mamun A, Hu W. J Phys Chem B. 2010;114:92–100.CrossRefGoogle Scholar
  32. 32.
    Vaca Chavez F, Saalwachter K. Macromolecules. 2011;44:1549–59.CrossRefGoogle Scholar
  33. 33.
    Vaca Chavez F, Saalwachter K. Macromolecules. 2011;44:1560–9.CrossRefGoogle Scholar
  34. 34.
    Singh M, Schaefer J. J Am Chem Soc. 2011;133:2626–31.CrossRefGoogle Scholar
  35. 35.
    Schmidt-Rohr K, Hu WG, Zumbulyadis N. Science. 1998;280:714–7.CrossRefGoogle Scholar
  36. 36.
    Hong Y-l, Miyoshi T. ACS Macro Lett. 2013;2:501–5.CrossRefGoogle Scholar
  37. 37.
    Li Z, Hong Y-l, Yuan S, Kang J, Kamimura A, Ohtsubo A, Miyoshi T. Macromolecules. 2015;48:5752–60.CrossRefGoogle Scholar
  38. 38.
    Yuan S, Li Z, Hong Y-l, Kang J, Kamimura A, Otsubo A, Miyoshi T. ACS Macro Lett. 2015;4:1382–5.CrossRefGoogle Scholar
  39. 39.
    Hong Y-l, Koga T, Miyoshi T. Macromolecules. 2015;48:3282–93.CrossRefGoogle Scholar
  40. 40.
    Hong Y-l, Miyoshi T. ACS Macro Lett. 2014;3:556–9.CrossRefGoogle Scholar
  41. 41.
    Hong Y-l, Yuan S, Li Z, Nozaki K, Miyoshi T. Phys Rev Lett. 2015;115:168301.CrossRefGoogle Scholar
  42. 42.
    Yuan S, Li Z, Kang J, Hong Y-l, Kamimura A, Otsubo A, Miyoshi T. ACS Macro Lett. 2015;4:143–6.CrossRefGoogle Scholar
  43. 43.
    Kang J, Yuan S, Hong Y-l, Cheng W, Kamimura A, Otshubo A, Miyoshi T. ACS Macro Lett. 2016;5:65–8.CrossRefGoogle Scholar
  44. 44.
    Chen W, Wang S, Zhang W, Hong Y-l, Miyoshi T. ACS Macro Lett. 2015;4:1264–7.CrossRefGoogle Scholar
  45. 45.
    Hong Y-l, Yuan S, Chen W, Kang J, Miyoshi T. ACS Macro Lett. 2016;5:355–8.CrossRefGoogle Scholar
  46. 46.
    Natta G, Corradini P, Vassi IW. Nuovo Cimento. 1960;15:52–67.CrossRefGoogle Scholar
  47. 47.
    Schelten J, Wignall GD, Ballard DGH, Longman GW. Polymer. 1977;18:1111–20.CrossRefGoogle Scholar
  48. 48.
    Luo C, Sommer J-U. ACS Macro Lett. 2016;5:30–4.CrossRefGoogle Scholar
  49. 49.
    Meyer H, Műller-Plathe F. Macromolecules. 2002;35:1241–52.CrossRefGoogle Scholar
  50. 50.
    Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H. Macromolecules. 2007;40:2036–45.CrossRefGoogle Scholar
  51. 51.
    Sadler DM, Barham PJ. Polymer. 1990;31:36–42.CrossRefGoogle Scholar
  52. 52.
    Sadler DM, Barham PJ. Polymer. 1990;31:46–50.CrossRefGoogle Scholar
  53. 53.
    Duran H, Steinhart M, Butt H-J, Floudas G. Nano Lett. 2011;11:1671–5.CrossRefGoogle Scholar
  54. 54.
    Qi H, Wang W, Li CY. ACS Macro Lett. 2014;3:675–8.CrossRefGoogle Scholar
  55. 55.
    Zhang C, Pansare VJ, Prud’homme RL, Priestley RD. Soft Matter. 2012;8:86–93.CrossRefGoogle Scholar
  56. 56.
    Richard-Lacroix M, Pellerin C. Macromolecules. 2013;46:9473–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wei Chen
    • 1
    • 2
  • You-lee Hong
    • 1
    • 3
  • Shichen Yuan
    • 1
  • Toshikazu Miyoshi
    • 1
  1. 1.Department of Polymer ScienceThe University of AkronAkronUSA
  2. 2.State Key Lab of Pollution Control and Resource Reuse Study, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  3. 3.RIKEN CLST-JEOL Collaboration CenterRIKENYokohamaJapan

Personalised recommendations