Advertisement

Chain Trajectory of Semicrystalline Polymers as Revealed by 13C-13C Double Quantum NMR

  • Wei Chen
  • You-lee Hong
  • Shichen Yuan
  • Toshikazu MiyoshiEmail author
Reference work entry

Abstract

Chain-folding structure of semicrystalline polymers in melt- and solution-grown crystals has been debated over the past several decades. Recently, 13C-13C double quantum (DQ) NMR spectroscopy and spin dynamics simulation have been applied to trace chain trajectory of 13C-labeled polymers in melt- and solution-grown crystals. We highlight the versatile approaches of using 13C-13C DQ NMR and isotope labeling for revealing (i) chain trajectory in melt- and solution-grown crystals, (ii) conformation of the folded chains in single crystals, (iii) self-folding in the early stage of crystallization, and (iv) unfolding of the folded chains under stretching.

Keywords

13C-13C Double Quantum NMR Chain Trajectory Semicrystalline Polymer Polymer Crystallization 

Notes

Acknowledgments

This work was financially supported by the National Science Foundation (grant no. DMR-1105829 and 1408855) and a UA start-up fund.

References

  1. 1.
    Cheng SZ. Phase transitions in polymers. Boston: Elsevier; 2008.Google Scholar
  2. 2.
    Strobl G. Prog Polym Sci. 2006;31:398–442.CrossRefGoogle Scholar
  3. 3.
    Lauritzen JI, Hoffman JD. J Res Natl Bur Stand A. 1960;74A:73–102.CrossRefGoogle Scholar
  4. 4.
    Hoffman JD, Miller RL. Polymer. 1997;38:3151–212.CrossRefGoogle Scholar
  5. 5.
    Allegra G, Meille SV. Phys Chem Chem Phys. 1999;1:5179–88.CrossRefGoogle Scholar
  6. 6.
    Allegra G, Meille SV. Adv Polym Sci. 2005;191:87–135.CrossRefGoogle Scholar
  7. 7.
    Liu C, Muthukumar M. J Chem Phys. 1998;109:2356.Google Scholar
  8. 8.
    Zhang J, Muthukumar M. J Chem Phys. 2007;126:234904.CrossRefGoogle Scholar
  9. 9.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ. Phys Rev Lett. 1998;81:373–6.CrossRefGoogle Scholar
  10. 10.
    Kaji K, Nishida K, Kanaya T, Matsuba G, Konishi T, Imai M. Adv Polym Sci. 2005;191:187–240.CrossRefGoogle Scholar
  11. 11.
    Strobl G. Rev Mod Phys. 2009;81:1287–300.CrossRefGoogle Scholar
  12. 12.
    Sadler DM, Keller A. Science. 1979;203:263–5.CrossRefGoogle Scholar
  13. 13.
    Guttman CM, Dimarzio EA, Hoffman JD. Polymer. 1981;22:597–608.CrossRefGoogle Scholar
  14. 14.
    Yoon DY, Flory PJ. Polymer. 1977;18:509–13.CrossRefGoogle Scholar
  15. 15.
    Spells SJ, Sadler DM. Polymer. 1984;25:739–48.CrossRefGoogle Scholar
  16. 16.
    Zheng X, Ungar G, Spells SJ, King SM. Macromolecules. 2005;38:7201–4.CrossRefGoogle Scholar
  17. 17.
    Jing X, Krimm S. J Polym Sci Polym Phys Ed. 1982;20:1155–73.CrossRefGoogle Scholar
  18. 18.
    Jing X, Krimm S. J Polym Sci Polym Phys Ed. 1983;21:123–30.CrossRefGoogle Scholar
  19. 19.
    Reddy KR, Tashiro K, Sakurai T, Yamaguchi N. Macromolecules. 2008;41:9807–13.CrossRefGoogle Scholar
  20. 20.
    Wittman JC, Lotz B. J Polym Sci Polym Phys Ed. 1985;23:205–26.CrossRefGoogle Scholar
  21. 21.
    Kumaki J, Kawauchi T, Yashima E. J Am Chem Soc. 2005;127:5788–9.CrossRefGoogle Scholar
  22. 22.
    Mullin N, Hobbs J. Phys Rev Lett. 2011;107:197801.CrossRefGoogle Scholar
  23. 23.
    Savage RC, Mullin N, Hobbs JK. Macromolecules. 2015;48:6160–5.CrossRefGoogle Scholar
  24. 24.
    Liu X, Song Y, Feng W, Liu N, Zhang W, Zhang X. J Am Chem Soc. 2011;133:3226–9.CrossRefGoogle Scholar
  25. 25.
    Tang M, Comellas G, Rienstra CM. Acc Chem Res. 2013;46:2080–8.CrossRefGoogle Scholar
  26. 26.
    Hong M, Schmidt-Rohr K. Acc Chem Res. 2013;46:2154–63.CrossRefGoogle Scholar
  27. 27.
    Polenova T, Gupta R, Goldbourt A. Anal Chem. 2015;87:5458–69.CrossRefGoogle Scholar
  28. 28.
    Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. New York: Academic Press; 1994.Google Scholar
  29. 29.
    Hu WG, Boeffel C, Schmidt-Rohr K. Macromolecules. 1999;32:1611–9.CrossRefGoogle Scholar
  30. 30.
    Kaji H, Miura N, Schmidt-Rohr K. Macromolecules. 2003;36:6100–13.CrossRefGoogle Scholar
  31. 31.
    Miyoshi T, Mamun A, Hu W. J Phys Chem B. 2010;114:92–100.CrossRefGoogle Scholar
  32. 32.
    Vaca Chavez F, Saalwachter K. Macromolecules. 2011;44:1549–59.CrossRefGoogle Scholar
  33. 33.
    Vaca Chavez F, Saalwachter K. Macromolecules. 2011;44:1560–9.CrossRefGoogle Scholar
  34. 34.
    Singh M, Schaefer J. J Am Chem Soc. 2011;133:2626–31.CrossRefGoogle Scholar
  35. 35.
    Schmidt-Rohr K, Hu WG, Zumbulyadis N. Science. 1998;280:714–7.CrossRefGoogle Scholar
  36. 36.
    Hong Y-l, Miyoshi T. ACS Macro Lett. 2013;2:501–5.CrossRefGoogle Scholar
  37. 37.
    Li Z, Hong Y-l, Yuan S, Kang J, Kamimura A, Ohtsubo A, Miyoshi T. Macromolecules. 2015;48:5752–60.CrossRefGoogle Scholar
  38. 38.
    Yuan S, Li Z, Hong Y-l, Kang J, Kamimura A, Otsubo A, Miyoshi T. ACS Macro Lett. 2015;4:1382–5.CrossRefGoogle Scholar
  39. 39.
    Hong Y-l, Koga T, Miyoshi T. Macromolecules. 2015;48:3282–93.CrossRefGoogle Scholar
  40. 40.
    Hong Y-l, Miyoshi T. ACS Macro Lett. 2014;3:556–9.CrossRefGoogle Scholar
  41. 41.
    Hong Y-l, Yuan S, Li Z, Nozaki K, Miyoshi T. Phys Rev Lett. 2015;115:168301.CrossRefGoogle Scholar
  42. 42.
    Yuan S, Li Z, Kang J, Hong Y-l, Kamimura A, Otsubo A, Miyoshi T. ACS Macro Lett. 2015;4:143–6.CrossRefGoogle Scholar
  43. 43.
    Kang J, Yuan S, Hong Y-l, Cheng W, Kamimura A, Otshubo A, Miyoshi T. ACS Macro Lett. 2016;5:65–8.CrossRefGoogle Scholar
  44. 44.
    Chen W, Wang S, Zhang W, Hong Y-l, Miyoshi T. ACS Macro Lett. 2015;4:1264–7.CrossRefGoogle Scholar
  45. 45.
    Hong Y-l, Yuan S, Chen W, Kang J, Miyoshi T. ACS Macro Lett. 2016;5:355–8.CrossRefGoogle Scholar
  46. 46.
    Natta G, Corradini P, Vassi IW. Nuovo Cimento. 1960;15:52–67.CrossRefGoogle Scholar
  47. 47.
    Schelten J, Wignall GD, Ballard DGH, Longman GW. Polymer. 1977;18:1111–20.CrossRefGoogle Scholar
  48. 48.
    Luo C, Sommer J-U. ACS Macro Lett. 2016;5:30–4.CrossRefGoogle Scholar
  49. 49.
    Meyer H, Műller-Plathe F. Macromolecules. 2002;35:1241–52.CrossRefGoogle Scholar
  50. 50.
    Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H. Macromolecules. 2007;40:2036–45.CrossRefGoogle Scholar
  51. 51.
    Sadler DM, Barham PJ. Polymer. 1990;31:36–42.CrossRefGoogle Scholar
  52. 52.
    Sadler DM, Barham PJ. Polymer. 1990;31:46–50.CrossRefGoogle Scholar
  53. 53.
    Duran H, Steinhart M, Butt H-J, Floudas G. Nano Lett. 2011;11:1671–5.CrossRefGoogle Scholar
  54. 54.
    Qi H, Wang W, Li CY. ACS Macro Lett. 2014;3:675–8.CrossRefGoogle Scholar
  55. 55.
    Zhang C, Pansare VJ, Prud’homme RL, Priestley RD. Soft Matter. 2012;8:86–93.CrossRefGoogle Scholar
  56. 56.
    Richard-Lacroix M, Pellerin C. Macromolecules. 2013;46:9473–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wei Chen
    • 1
    • 2
  • You-lee Hong
    • 1
    • 3
  • Shichen Yuan
    • 1
  • Toshikazu Miyoshi
    • 1
    Email author
  1. 1.Department of Polymer ScienceThe University of AkronAkronUSA
  2. 2.State Key Lab of Pollution Control and Resource Reuse Study, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  3. 3.RIKEN CLST-JEOL Collaboration CenterRIKENYokohamaJapan

Personalised recommendations