NMR Imaging for the Study of Drug Tablets for Controlled Release

  • Héloïse Thérien-Aubin
  • Xiao-Xia ZhuEmail author
Reference work entry


Due to its nondestructive and noninvasive nature, its versatility, and its ease of implementation, NMR imaging has imposed itself as a technique well suited to study pharmaceutical tablets for controlled release of active ingredients. NMR imaging has been used for over two decades to study the pharmaceutical formulation. It is possible to obtain cross-sectional images from the interior of the material and follow the kinetics of water absorption, tablet dissolution and erosion, tablet swelling, or drug distribution, all important factors affecting the pharmacokinetics of the drug after the administration of a pharmaceutical tablet. NMR imaging was used to elucidate the effects of temperature, tablet size, and drug loading on the properties and drug release process of the tablets. This paves the way to the rational design of new pharmaceutical tablets for controlled drug delivery.


Diffusion Drug release MRI NMRI NMR imaging Pharmaceutical tablet Swelling 


  1. 1.
    Katdare A, Chaubal MV. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. New York: CRC Press; 2006. p. 452.CrossRefGoogle Scholar
  2. 2.
    Ansel HC, Allen Jr LV. Ansel’s pharmaceutical dosage forms and drug delivery systems. 10th ed. Baltimore: Wolters Kluwer; 2014. p. 832.Google Scholar
  3. 3.
    Bichara A, Gervais S, Le Garrec D, Ouadji P, Sant Vinayak, Gosein S, et al. Bilayer composition for the sustained release of acetaminophen and tramadol. US Patent 8,895,066; 2014.Google Scholar
  4. 4.
    Lenaerts V, Ouadji-Njiki PL, Bacon J, Ouzerourou R, Gervais S, Rahmouni M, et al. Controlled-release compositions. US Patent 8,487,002 B2; 2013.Google Scholar
  5. 5.
    Kizilbash A, Ngo-Minh CT. Review of extended-release formulations of Tramadol for the management of chronic non-cancer pain: focus on marketed formulations. J Pain Res. 2014;7:149–61.CrossRefGoogle Scholar
  6. 6.
    Thérien-Aubin H, Zhu XX. NMR spectroscopy and imaging studies of pharmaceutical tablets made of starch. Carbohydr Polym. 2009;75(3):369–79.CrossRefGoogle Scholar
  7. 7.
    Thérien-Aubin H, Baille WE, Zhu XX. Diffusion of molecular probes and the effects of their interactions with polymer matrices as studied by pulsed-field gradient NMR spectroscopy. Can J Chem. 2008;86(6):579–85.CrossRefGoogle Scholar
  8. 8.
    Thérien-Aubin H, Zhu XX, Ravenelle F, Marchessault RH. Membrane formation and drug loading effects in high amylose starch tablets studied by NMR imaging. Biomacromolecules. 2008;9(4):1248–54.CrossRefGoogle Scholar
  9. 9.
    Thérien-Aubin H, Baille WE, Zhu XX, Marchessault RH. Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects. Biomacromolecules. 2005;6(6):3367–72.CrossRefGoogle Scholar
  10. 10.
    Malveau C, Baille WE, Zhu XX, Marchessault RH. NMR imaging of high-amylose starch tablets. 2. Effect of tablet size. Biomacromolecules. 2002;3(6):1249–54.CrossRefGoogle Scholar
  11. 11.
    Baille WE, Malveau C, Zhu XX, Marchessault RH. NMR imaging of high-amylose starch tablets. 1. Swelling and water uptake. Biomacromolecules. 2002;3(1):214–8.CrossRefGoogle Scholar
  12. 12.
    Wang YJ, Ravenelle F, Zhu XX. NMR imaging study of cross-linked high-amylose starch tablets – The effect of drug loading. Can J Chem. 2010;88(3):202–7.CrossRefGoogle Scholar
  13. 13.
    Callaghan PT. Principles of nuclear magnetic resonance microscopy. Oxford: Oxford University Press; 1993.Google Scholar
  14. 14.
    Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190–1.CrossRefGoogle Scholar
  15. 15.
    Garroway AN, Grannell PK, Mansfield P. Image formation in NMR by a selective irradiative process. J Phys C Solid State Phys. 1974;7(24):L457–L62.CrossRefGoogle Scholar
  16. 16.
    Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C Solid State Phys. 1977;10(3):L55–L8.CrossRefGoogle Scholar
  17. 17.
    Edelstein WA, Hutchison JMS, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25(4):751–6.CrossRefGoogle Scholar
  18. 18.
    Kumar A, Welti D, Ernst RR. NMR Fourier zeugmatography. J Magn Reson. 1975;18(1):69–83.Google Scholar
  19. 19.
    Tres F, Coombes SR, Phillips AR, Hughes LP, Wren SAC, Aylott JW, et al. Investigating the dissolution performance of amorphous solid dispersions using magnetic resonance imaging and proton NMR. Molecules. 2015;20(9):16404–18.CrossRefGoogle Scholar
  20. 20.
    Kulinowski P, Hudy W, Mendyk A, Juszczyk E, Weglarz WP, Jachowicz R, et al. The relationship between the evolution of an internal structure and drug dissolution from controlled-release matrix tablets. AAPS PharmSciTech. 2016;17(3):735–42.CrossRefGoogle Scholar
  21. 21.
    Abraham A, Olusanmi D, Ilott AJ, Good D, Murphy D, McNamara D, et al. Correlation of phosphorus cross-linking to hydration rates in sodium starch glycolate tablet disintegrants using MRI. J Pharm Sci. 2016;105(6):1907–13.CrossRefGoogle Scholar
  22. 22.
    Kulinowski P, Woyna-Orlewicz K, Rappen GM, Haznar-Garbacz D, Weglarz WP, Dorozynski PP. An understanding of modified release matrix tablets behavior during drug dissolution as the key for prediction of pharmaceutical product performance – case study of multimodal characterization of quetiapine fumarate tablets. Int J Pharm. 2015;484(1–2):235–45.CrossRefGoogle Scholar
  23. 23.
    Chen YY, Hughes LP, Gladden LF, Mantle MD. Quantitative ultra-fast MRI of HPMC swelling and dissolution. J Pharm Sci. 2010;99(8):3462–72.CrossRefGoogle Scholar
  24. 24.
    Rajabisiahboomi AR, Bowtell RW, Mansfield P, Henderson A, Davies MC, Melia CD. Structure and behavior in hydrophilic matrix sustained-release dosage Forms .2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. J Control Release. 1994;31(2):121–8.CrossRefGoogle Scholar
  25. 25.
    Fyfe CA, Blazek AI. Investigation of hydrogel formation from hydroxypropylmethylcellulose (HPMC) by NMR spectroscopy and NMR imaging techniques. Macromolecules. 1997;30(20):6230–7.CrossRefGoogle Scholar
  26. 26.
    Timmins P, Desai D, Chen W, Wray P, Brown J, Hanley S. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets. Ther Deliv. 2016;7(8):553–72.CrossRefGoogle Scholar
  27. 27.
    Bowtell R, Sharp JC, Peters A, Mansfield P, Rajabi-Siahboomi AR, Davies MC, et al. Proceedings of the second international meeting on recent advances in MR applications to porous media NMR microscopy of hydrating hydrophilic matrix pharmaceutical tablets. Magn Reson Imaging. 1994;12(2):361–4.CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Gladden L, Avalle P, Mantle M. In vitro quantitative 1H and 19F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell. J Control Release. 2011;156(3):345–54.CrossRefGoogle Scholar
  29. 29.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.CrossRefGoogle Scholar
  30. 30.
    Callaghan PT, Eccles CD, Xia Y. NMR microscopy of dynamic displacements: K-space and q-space imaging. J Phys E: Sci Instrum. 1988;21(8):820–2.CrossRefGoogle Scholar
  31. 31.
    Chen C, Gladden LF, Mantle MD. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional (19)F and (1)H magnetic resonance imaging. Mol Pharm. 2014;11(2):630–7.CrossRefGoogle Scholar
  32. 32.
    Kojima M, Ando S, Kataoka K, Hirota T, Aoyagi K, Nakagami H. Magnetic resonance imaging (MRI) study of swelling and water mobility in micronized low-substituted hydroxypropylcellulose matrix tablets. Chem Pharm Bull. 1998;46(2):324–8.CrossRefGoogle Scholar
  33. 33.
    Hyde TM, Gladden LF. Simultaneous measurement of water and polymer concentration profiles during swelling of poly(ethylene oxide) using magnetic resonance imaging. Polymer. 1998;39(4):811–9.CrossRefGoogle Scholar
  34. 34.
    Ghi PY, Hill DJT, Whittaker AK. NMR imaging of water sorption into poly(hydroxyethyl methacrylate-co-tetrahydrofurfuryl methacrylate). Biomacromolecules. 2001;2(2):504–10.CrossRefGoogle Scholar
  35. 35.
    Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci. 1982;79(11):3523–6.CrossRefGoogle Scholar
  36. 36.
    Knöös P, Wahlgren M, Topgaard D, Ulvenlund S, Piculell L. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid). J Phys Chem B. 2014;118(32):9757–67.CrossRefGoogle Scholar
  37. 37.
    Knöös P, Topgaard D, Wahlgren M, Ulvenlund S, Piculell L. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility. Langmuir. 2013;29(45):13898–908.CrossRefGoogle Scholar
  38. 38.
    Dahlberg C, Dvinskikh SV, Schuleit M, Furó I. Polymer swelling, drug mobilization and drug recrystallization in hydrating solid dispersion tablets studied by multinuclear NMR microimaging and spectroscopy. Mol Pharm. 2011;8(4):1247–56.CrossRefGoogle Scholar
  39. 39.
    Fyfe CA, Blazek-Welsh AI. Quantitative NMR imaging study of the mechanism of drug release from swelling hydroxypropylmethylcellulose tablets. J Control Release. 2000;68(3):313–33.CrossRefGoogle Scholar
  40. 40.
    Malaterre V, Metz H, Ogorka J, Gurny R, Loggia N, Mäder K. Benchtop-magnetic resonance imaging (BT-MRI) characterization of push–pull osmotic controlled release systems. J Control Release. 2009;133(1):31–6.CrossRefGoogle Scholar
  41. 41.
    Kulinowski P, Dorożyński P, Młynarczyk A, Węglarz WP. Magnetic resonance imaging and image analysis for assessment of HPMC matrix tablets structural evolution in USP apparatus 4. Pharm Res. 2011;28(5):1065–73.CrossRefGoogle Scholar
  42. 42.
    Wang YJ, Assaad E, Ispas-Szabo P, Mateescu MA, Zhu XX. NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex. Int J Pharm. 2011;419(1–2):215–21.CrossRefGoogle Scholar
  43. 43.
    Mikac U, Sepe A, Baumgartner S, Kristl J. The influence of high drug loading in Xanthan tablets and media with different physiological pH and ionic strength on swelling and release. Mol Pharm. 2016;13(3):1147–57.CrossRefGoogle Scholar
  44. 44.
    Kowalczuk J, Tritt-Goc J, Piślewski N. The swelling properties of hydroxypropyl methyl cellulose loaded with tetracycline hydrochloride: magnetic resonance imaging study. Solid State Nucl Magn Reson. 2004;25(1–3):35–41.CrossRefGoogle Scholar
  45. 45.
    Abrahmsén-Alami S, Körner A, Nilsson I, Larsson A. New release cell for NMR microimaging of tablets: swelling and erosion of poly(ethylene oxide). Int J Pharm. 2007;342(1–2):105–14.CrossRefGoogle Scholar
  46. 46.
    Tajiri T, Morita S, Sakamoto R, Suzuki M, Yamanashi S, Ozaki Y, et al. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging. Int J Pharm. 2010;395(1–2):147–53.CrossRefGoogle Scholar
  47. 47.
    Huanbutta K, Sriamornsak P, Limmatvapirat S, Luangtana-anan M, Yoshihashi Y, Yonemochi E, et al. Swelling kinetics of spray-dried chitosan acetate assessed by magnetic resonance imaging and their relation to drug release kinetics of chitosan matrix tablets. Eur J Pharm Biopharm. 2011;77(2):320–6.CrossRefGoogle Scholar
  48. 48.
    Kulinowski P, Młynarczyk A, Dorozynski P, Jasiński K, Gruwel MLH, Tomanek B, et al. Magnetic resonance microscopy for assessment of morphological changes in hydrating hydroxypropylmethyl cellulose matrix tablets in situ. Pharm Res. 2012;29(12):3420–33.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.Département de chimieUniversité de MontréalMontréalCanada

Personalised recommendations