In Situ Photo Irradiation Solid-State NMR Spectroscopy Applied to Retinal-Binding Membrane Proteins

Reference work entry

Abstract

It is essential to elucidate the photoreaction cycles to understand the function of photoreceptor membrane proteins. The photointermediates that appear in the photoreaction cycle typically have short half-lives; therefore, it is difficult to detect the photointermediates using solid-state nuclear magnetic resonance (NMR) spectroscopy. Recently, it has become possible to observe photointermediates using in situ photoirradiation solid-state NMR and dynamic nuclear polarization (DNP)-enhanced photoirradiation solid-state NMR. In situ photoirradiation solid-state NMR is designed to irradiate light from the top part of the zirconia rotor through a glass cap, which makes it possible to irradiate the inside of the rotor and leads to efficient photoirradiation. This method has made it possible to observe photointermediates of sensory rhodopsins such as sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII), and bacteriorhodopsin (bR) and its Y185F mutant. In SRI, green light generates M-intermediates that show positive phototaxis, while blue light generates P-intermediates that show negative phototaxis. In SRII, green light generates M-intermediates and blue light generates O-intermediates. In Y185F-bR, O-intermediate was first observed using solid-state NMR spectroscopy. DNP-enhanced photoirradiation is also a powerful tool for the detection of short-lived photointermediate such as K-, L-, M-, and N-intermediates in bR. In channel rhodopsin, several photointermediates such as P1, P2, P3, P4, and Px photointermediates have been observed. Thus, in situ photoirradiation solid-state NMR spectroscopy is demonstrated to provide significant insights to understand the photoactivation mechanisms of photoreceptor retinal-binding membrane proteins.

Keywords

Photoreaction cycle Photoreceptor membrane protein Photointermediate In situ photoirradiation Solid-state NMR Dynamic nuclear polarization Rhodopsin Sensory rhodopsin Bacteriorhodopsin Channel rhodopsin Phototaxis 

References

  1. 1.
    Smith SO, de Groot HJM, Gebhard R, Courtin ML, Lugtenburg J, Herzfeld J, Griffin RG. Structure and protein environment of the retinal chromophore in light- and dark-adapted bacteriorhodopsin studied by solid-state NMR. Biochemistry. 1989;28:8897–904.CrossRefGoogle Scholar
  2. 2.
    McDermott AE, Thompson LK, Winkel C, Farrar MR, Pelletier S, Lugtenburg J, Herzfeld J, Griffin RG. Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M state. Biochemistry. 1991;30:8366–71.CrossRefGoogle Scholar
  3. 3.
    Farrar MR, Lakshmi KV, Smith SO, Brown RS, Raap J, Lugtenburg J, Griffin RG, Herzfeld J. Solid state NMR study of [ε-13C]Lys-bacteriorhodopsin: Schiff base photoisomerization. Biophys J. 1993;65:310–5.CrossRefGoogle Scholar
  4. 4.
    Lakshmi KV, Farrar MR, Raap J, Lugtenburg J, Griffin RG, Herzfeld J. Solid state 13C and 15N NMR investigations of the N intermediate of bacteriorhodopsin. Biochemistry. 1994;33:8853–7.CrossRefGoogle Scholar
  5. 5.
    Feng X, Verdegem PJE, Edén M, Sandström D, Lee YK, Bovee-Geurts PHM, de Grip WJ, Lugtenburg J, de Groot HJM, Levitt MH. Determination of a molecular tortional angle in the metarhorhopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J Biomol NMR. 2000;16:1–8.CrossRefGoogle Scholar
  6. 6.
    Crocker E, Eilers M, Ahuja S, Hornak V, Hirshfeld A, Sheves M, Smith SO. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J Mol Biol. 2006;357:163–72.CrossRefGoogle Scholar
  7. 7.
    Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A, Ziliox M, Syrett N, Reeves PJ, Khorana HG, Sheves M, Smith SO. Location of the retinal chromophore in the activated state of rhodopsin. J Biol Chem. 2009;284:10190–201.CrossRefGoogle Scholar
  8. 8.
    Hu JG, Sun BQ, Bizounok M, Hatcher ME, Lansing JC, Raap J, Verdegem PJE, Lugtenburg J, Griffin RG, Herzfeld J. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry. 1998;37:8088–96.CrossRefGoogle Scholar
  9. 9.
    Petkova AT, Hatanaka M, Jaroniec CP, Hu JG, Belenky M, Verhoeven M, Lugtenburg J, Griffin RG, Herzfeld J. Tryptophan interaction in bacteriorhodopsin: a heteronuclear solid-state NMR study. Biochemistry. 2002;41:2429–37.CrossRefGoogle Scholar
  10. 10.
    Hu JG, Sun BQ, Petkova AT, Griffin RG, Herzfeld J. The predischarge chromophore in bacteriorhodopsin: a 15N solid-state NMR study of the L photointermediate. Biochemistry. 1997;36:9316–22.CrossRefGoogle Scholar
  11. 11.
    Concistrè M, Gansmüller A, McLean N, Johannessen OG, Montesinos IM, Bovee-Geurts PHM, Verdegem P, Lugtenburg J, Brown RCD, DeGrip WJ, Levitt MH. Double-quantum 13C nuclear magnetic resonance of bacteriorhodopsin, the first photointermediate in mammalian vision. J Am Chem Soc. 2008;130:10490–1.Google Scholar
  12. 12.
    Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Blenky M, Griffin RG, Herzfeld J. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2008;105:883–8.CrossRefGoogle Scholar
  13. 13.
    Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG. Functional and shunt state of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci U S A. 2009;106:9244–9.CrossRefGoogle Scholar
  14. 14.
    Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RCD, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2015;112:9896–901.CrossRefGoogle Scholar
  15. 15.
    Kawamura I, Kihara N, Ohmine M, Nishimura K, Tuzi S, Saitô H, Naito A. Solid-state NMR studies of two backbone conformations at Tyr185 as a function of retinal configurations in the dark, light, and pressure adapted bacteriorhodopsin. J Am Chem Soc. 2007;129:1016–7.CrossRefGoogle Scholar
  16. 16.
    Tomonaga Y, Hidaka T, Kawamura I, Nishio T, Ohsawa K, Okitsu T, Wada A, Sudo Y, Kamo N, Ramamoorthy A, Naito A. An active photoreceptor intermediate revealed by in situ photoirradiated solid-state NMR spectroscopy. Biophys J. 2011;101:L50–2.CrossRefGoogle Scholar
  17. 17.
    Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew Chem Int Ed. 2014;53:6960–4.CrossRefGoogle Scholar
  18. 18.
    Naito A, Kawamura I. Photoactivated structural changes in photoreceptor membrane proteins as revealed by in situ photoirradiation solid-state NMR spectroscopy. In: Separovic F, Naito A, editors. Advances in biological solid-state NMR: proteins and membrane active peptides. Cambridge: Royal Society of Chemistry; 2014. p. 387–404. CrossRefGoogle Scholar
  19. 19.
    Naito A, Kawamura I, Javkhlantugs N. Recent solid-state NMR studies of membrane-bound peptides and proteins. Annu Rep NMR Spectrosc. 2015;86:333–411.CrossRefGoogle Scholar
  20. 20.
    Oshima K, Shigeta A, Makino Y, Kawamura I, Okitsu T, Wada A, Tuzi S, Iwasa T, Naito A. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy. Photochem Photobiol Sci. 2015;14:1694–702.CrossRefGoogle Scholar
  21. 21.
    Bajaj VS, Hornstein MK, Kreischer KE, Sirigiri JR, Woskov PP, Mak-Jurkauskas ML, Herzfeld J, Temkin RJ, Griffin RG. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J Magn Reson. 2007;189:251–79.CrossRefGoogle Scholar
  22. 22.
    Spudich JL, Bogomolni RA. Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature. 1984;312:509–13.CrossRefGoogle Scholar
  23. 23.
    Suzuki D, Irieda H, Honma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors. 2010;10:4010–39.CrossRefGoogle Scholar
  24. 24.
    Chen X, Spudich JL. Demonstration of 2:2 stoichiometry in the functional SRI-HtrI signaling complex in Halobacterium membrane by gene fusion analysis. Biochemistry. 2002;41:3891–6.CrossRefGoogle Scholar
  25. 25.
    Szundi I, Swartz TE, Bogomolni RA. Multicolored protein conformation state in the photocycle of transducer-free sensory rhodopsin-I. Biophys J. 2001;80:469–79.CrossRefGoogle Scholar
  26. 26.
    Harbison GS, Smith SO, Pardoen JA, Mudder PPJ, Lugtenburg J, Herzfeld J, Mathies R, Griffin RG. Solid-state 13C NMR studies of retinal in bacteriorhodopsin. Biochemistry. 1984;23:2662–87.CrossRefGoogle Scholar
  27. 27.
    Sineshchekov OA, Sasaki J, Philips BJ, Spudich JL. A Schiff base connectivity switch in sensory rhodopsin signaling. Proc Natl Acad Sci U S A. 2008;105:16159–64.CrossRefGoogle Scholar
  28. 28.
    Spudich JL, Luecke H. Sensory rhodopsin II: functional insight from structure. Curr Opin Struct Biol. 2002;12:540–6.CrossRefGoogle Scholar
  29. 29.
    Kamo N, Shimono K, Iwamoto M, Sudo Y. Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Mosc). 2001;66:1277–82.CrossRefGoogle Scholar
  30. 30.
    Roy S, Kikukawa T, Sharma P, Kamo N. All-optical switching in pharaonic phoborhodopsin protein molecules. IEEE Trans NanoBiosci. 2006;5:178–87.CrossRefGoogle Scholar
  31. 31.
    Tateishi Y, Abe T, Tamogami J, Nakano Y, Kikukawa T, Kamo N, Unno M. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis. Biochemistry. 2011;50:2135–43.CrossRefGoogle Scholar
  32. 32.
    Lanyi JK. Mechanism of ion transport across membranes. J Biol Chem. 1997;272:31209–12.CrossRefGoogle Scholar
  33. 33.
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol. 1999;291:899–911.CrossRefGoogle Scholar
  34. 34.
    Luecke H, Schobert B, Carteiller JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. J Mol Biol. 2000;300:1237–55.CrossRefGoogle Scholar
  35. 35.
    Lanyi JK. Proton transfers in the bacteriorhodopsin photoctcle. Biochim Biophys Acta. 2006;1757:1012–8.CrossRefGoogle Scholar
  36. 36.
    Nango E, Royant A, Kubo M, Nakane T, Wlckstrand C, Kimura T, Tanaka T, Tono K, Soug C, Tanaka R, et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science. 2016;354:1552–7.CrossRefGoogle Scholar
  37. 37.
    Lanyi JK. Molecular mechanism of ion transport in bacteriorhodopsin: insights from crystallographic, spectroscopic, kinetic, and mutational studies. J Phys Chem B. 2000;104:11441–8.CrossRefGoogle Scholar
  38. 38.
    Iwasa T, Tokunaga F, Yoshizawa T. Photochemical reaction of 13-cis-bacteriorhodopsin studied by low temperature spectrophotometry. Photochem Photobiol. 1981;33:539–45.CrossRefGoogle Scholar
  39. 39.
    Kalisky O, Goldschmidt CR, Ottolenghi M. On the photocycle and light adaptation of dark-adapted bacteriorhodopsin. Biophys J. 1977;19:185–9.CrossRefGoogle Scholar
  40. 40.
    Morgan JE, Vakkasoglu AS, Lanyi JK, Lugtenburg J, Gennis RB, Maeda A. Structural changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle. Biophys J. 2012;103:444–52.CrossRefGoogle Scholar
  41. 41.
    Durach M, Marti T, Khorana HG, Rothschild KJ. UV-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Proc Natl Acad Sci U S A. 1990;87:9873–7.CrossRefGoogle Scholar
  42. 42.
    Sonar S, Krebs MP, Khorana HG, Rothchild KJ. Static and time-resolved absorption spectroscopy of the bacteriorhodopsin mutant Tyr185 → Phe: evidence for an equilibrium between bR570 and an O-like species. Biochemistry. 1993;32:223–2271.Google Scholar
  43. 43.
    Rath P, Krebs MP, He Y, Khorana HG, Rothchild KJ. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr185 → Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Biochemistry. 1993;32:2272–81.CrossRefGoogle Scholar
  44. 44.
    Richter HT, Needleman R, Lanyi JK. Perturbed interaction between residues 85 and 204 in Tyr-185 → Phe and Asp-85 → Glu bacteriorhodopsin. Biophys J. 1996;71:3392–8.CrossRefGoogle Scholar
  45. 45.
    Roepe PD, Ahl PL, Herzfeld J, Lugtenburg J, Rothchild KJ. Tyrosine protonation changes in bacteriorhodopsin, a Fourier transform infrared study of BR548 and its primary photoproduct. J Biol Chem. 1988;263:5110–7.Google Scholar
  46. 46.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Barthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940–5.CrossRefGoogle Scholar
  47. 47.
    Verhoefen MK, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. ChemPhysChem. 2010;11:3113–22.CrossRefGoogle Scholar
  48. 48.
    Kato HE, Zhang F, Yizhan O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature. 2012;482:369–75.CrossRefGoogle Scholar
  49. 49.
    Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P. Photocycle of chanelrhodopsin-2. Photochem Photobiol. 2009;85:400–11.CrossRefGoogle Scholar
  50. 50.
    Bamann C, Kirsch T, Nagel G, Bamberg E. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol. 2008;375:686–94.CrossRefGoogle Scholar
  51. 51.
    Lórenz-Fonfria VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. Biochim Biophys Acta. 2014;1837:626–42.CrossRefGoogle Scholar
  52. 52.
    Harbison GS, Smith SO, Pardoen JA, Wikel C, Lugtenburg J, Hertfeld J, Mathies R, Griffin RG. Dark adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases. Proc Natl Acad Sci U S A. 1984;81:1706–9.CrossRefGoogle Scholar
  53. 53.
    Concistrè M, Gansmüller A, McLean N, Johannessen OG, Montesinos IM, Bovee-Geurts PHM, Brown RCD, DeGrip WJ, Levitt MH. Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy. J Am Chem Soc. 2009;131:6133–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of EngineeringYokohama National UniversityHodogaya-kuJapan

Personalised recommendations