Quantification of Food Polysaccharides by means of NMR

  • Adriana Carvalho de Souza
Reference work entry


Quantitative NMR has become a well-recognized and widely applied analytical tool for the quantification of very diverse classes of compounds in a large variety of samples. The advantages of quantitative NMR upon chromatography are (i) it requires almost no preparation time allowing high-throughput quantification; (ii) it is independent of chemical nature of compound of interest or the matrix in which it should be determined, therefore minimal or no sample preparation or derivatization is needed; and (iii) it is a primary ratio quantification method and therefore does not need reference compounds for quantification. Over decades, NMR has been used for the structural characterization of polysaccharides from different origin. Only the past 15 years, publications are available in which NMR is applied for the quantification of polysaccharides. This chapter shows an overview of liquid 1D and 2D methods used to determine the amount of polysaccharides in food-related samples or to quantify characteristics such as degree of polymerization and substitution degrees. These examples confirmed the versatility, robustness, and straightforwardness of qNMR as analytical tool for polysaccharide quantification.


Polysaccharides qNMR qHSQC Quantification Cell wall polysaccharides Glycans pectins Cellulose Arabinoxylans Glucans Mannuronans Degree of substitution Degree of polymerization 


  1. 1.
    Samant SK, Singhal RS, Kulkarni PR, Rege DV. Protein-polysaccharide interactions: a new approach in food formulations. Int J Food Sci Technol. 1993;28:547–62.CrossRefGoogle Scholar
  2. 2.
    Ramakrishnan V, Luthria DL. Recent applications of NMR in food and dietary studies. J Sci Food Agric. 2017;97:33–42.CrossRefGoogle Scholar
  3. 3.
    Anderson DM, Millar JR, Weiping W. Gum Arabic (Acacia Senegal): unambiguous identification by 13C-NMR spectroscopy as an adjunct to the Revised JECFA Specification, and application of 13C NMR spectra for regulatory/legislative purpose. Food Addit Contam. 1991;8:405–21.CrossRefGoogle Scholar
  4. 4.
    Cheng HN, Neiss TG, NMR S. Spectroscopy of food polysaccharides. Polym Rev. 2012;52(2):81–114.CrossRefGoogle Scholar
  5. 5.
    Gong G, Fan J, Sun Y, Wu Y, Liu Y, Sun W, Zhang Y, Wang Z. Isolation, structural characterization, and antioxidativity of polysaccharide LBLP5-A from Lycium barbarum leaves. Process Biochem. 2016;51(2):314–24.CrossRefGoogle Scholar
  6. 6.
    Larive CK, Jayawickrama D, Orfi L. Quantitative analysis of peptides with NMR spectroscopy. Appl Spectrosc. 1997;51:1531–6.CrossRefGoogle Scholar
  7. 7.
    Barding Jr GA, Salditos R, Larive CK. Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem. 2012;404(4):1165–79.CrossRefGoogle Scholar
  8. 8.
    Quinn TJ. Primary methods of measurement and primary standards. Metrologia. 1997;34:61–5.CrossRefGoogle Scholar
  9. 9.
    Malz F, Jancke H. Validation of quantitative NMR. J Pharm Biomed Anal. 2005;38:813–23.CrossRefGoogle Scholar
  10. 10.
    Malz F. Quantitative NMR in solution state NMR. In: Holzgrabe U, Wawer I, Diehl B, editors. NMR spectroscopy in pharmaceutical analysis. Oxford: Elsevier; 2008. p. 43–62.CrossRefGoogle Scholar
  11. 11.
    Holzgrabe U, Deubner R, Schollmayer C, Waibel B. Quantitative NMR spectroscopy – applications in drug analysis. J Pharm Biomed Anal. 2005;38(5):806–12.CrossRefGoogle Scholar
  12. 12.
    Xu Q, Abeygunawardana C, Ng AS, Sturgess AW, Harmon BJ, Hennessey Jr JP. Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations. Anal Biochem. 2005;336(2):262–72.CrossRefGoogle Scholar
  13. 13.
    Xu Q, Klees J, Teyral J, Capen R, Huang M, Sturgess AW, Hennessey Jr JP, Washabaugh M, Sitrin R, Abeygunawardana C. Quantitative nuclear magnetic resonance analysis and characterization of the derivatized Haemophilus influenzae type b polysaccharide intermediate for PedvaxHIB. Anal Biochem. 2005;337(2):235–45.CrossRefGoogle Scholar
  14. 14.
    Garrido R, Puyada A, Fernández A, González M, Ramírez U, Cardoso F, Valdés Y, González D, Fernández V, Vérez V, Vélez H. Quantitative proton nuclear magnetic resonance evaluation and total assignment of the capsular polysaccharide Neisseria meningitidis serogroup X. J Pharm Biomed Anal. 2012;70:295–300.CrossRefGoogle Scholar
  15. 15.
    Flurer CL. Characterization of galactomannans by capillary electrophoresis. Food Addit Contam. 2000;17:721–31.CrossRefGoogle Scholar
  16. 16.
    Flurer CL, Crowe JB, Wolnik KA. Detection of adulteration of locust bean gum with guar gum by capillary electrophoresis and polarized light microscopy. Food Addit Contam. 2000;17:3–15.CrossRefGoogle Scholar
  17. 17.
    Ruíz-Angel MJ, Simó-Alfonso EF, Mongay-Fernández C, Ramis-Ramos G. Identification of Leguminosae gums and evaluation of carob-guar mixtures by capillary zone electrophoresis of protein extracts. Electrophoresis. 2002;23:1709–15.CrossRefGoogle Scholar
  18. 18.
    Davidson MH, Dugan LD, Burns JH, Bova J, Story K, Drennan KB. The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. J Am Med Assoc. 1991;265:833–9.CrossRefGoogle Scholar
  19. 19.
    Bohn JA, BeMiller JN. (1 → 3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym. 1995;28:3–14.CrossRefGoogle Scholar
  20. 20.
    Braaten JT, Scott FW, Wood PJ, Riedel KD, Wolynetz MS, Brule D, Collins MW. High β-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabet Med. 1993;11:312–8.CrossRefGoogle Scholar
  21. 21.
    Braaten JT, Wood PJ, Scott FW, Woleynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Nutr. 1994;48:465–74.Google Scholar
  22. 22.
    Wursch P, Pi-Sunyer FX. The role of viscous soluble fiber in the metabolic control of diabetes. A review with special emphasis on cereals rich in β-glucan. Diabetes Care. 1997;20:1774–80.CrossRefGoogle Scholar
  23. 23.
    Wood PJ, Beer MU, Butler G. Evaluation of the role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr. 2000;84:19–23.Google Scholar
  24. 24.
    Lowman DW, Williams DL. A proton nuclear magnetic resonance method for the quantitative analysis on a dry weight basis of (1 → 3)-β-d-glucans in a complex, solvent-wet matrix. J Agric Food Chem. 2001;49(9):4188–91.CrossRefGoogle Scholar
  25. 25.
    Mueller A, Mayberry W, Acuff R, Thedford S, Brower W, Williams D. Lipid content of microparticulate (1 → 3)-β-d-glucan isolated from Saccharomyces cerevisiae. Microbios. 1994;79:253–61.Google Scholar
  26. 26.
    van de Velde F, De Ruiter GA. Carrageenan. In: Steinbüchel A, Debaets S, Van Damme EJ, editors. Biopolymers (vol 6 ): polysaccharide II: polysaccharides from eukaryotes. Weinheim: Wiley-VCH; 2002. p. 245–74.Google Scholar
  27. 27.
    Roberts MA, Quemener B. Measurement of carrageenans in food: challenges, progress, and trends in analysis. Trends Food Sci Technol. 1999;10:169–81.CrossRefGoogle Scholar
  28. 28.
    Van De Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS. 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Trends Food Sci Technol. 2002;13(3):73–92.CrossRefGoogle Scholar
  29. 29.
    Campa C, Oust A, Skjåk-Bræk G, Paulsen BS, Paoletti S, Christensen BE, Ballance S. Determination of average degree of polymerisation and distribution of oligosaccharides in a partially acid-hydrolysed homopolysaccharide: a comparison of four experimental methods applied to mannuronan. J Chrom A. 2004;1026(1–2):271–81.CrossRefGoogle Scholar
  30. 30.
    Saeman JF, Moore WE, Mitchell RL, Millet MA. Techniques for the determination of pulp constituents by quantitative paper chromatography. TAPPI. 1954;37:336–43.Google Scholar
  31. 31.
    Barreto-Berger E, Travassos LR, Gorin PAJ. Chemical structure of the d-galacto-d-mannan component from hyphae of Aspergillus niger and other Aspergillus spp. Carbohydr Res. 1980;86:273–85.CrossRefGoogle Scholar
  32. 32.
    Biermann CJ. Hydrolysis and other cleavages of glycosidic linkages in polysaccharides. Adv Carbohydr Chem Biochem. 1988;46:251–71.CrossRefGoogle Scholar
  33. 33.
    De Ruiter GA, Schols HA, Voragen AGJ, Rombouts FM. Carbohydrate analysis of water-soluble uronic acid containing polysaccharides with high performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem. 1992;207:176–85.CrossRefGoogle Scholar
  34. 34.
    Sun R, Lawther JM, Banks WB. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym. 1996;29:325–31.CrossRefGoogle Scholar
  35. 35.
    Bertaud F, Sundberg A, Holmbom B. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr Polym. 2002;48:319–24.CrossRefGoogle Scholar
  36. 36.
    Sassaki GL, Gorin PAJ, Souza LM, Czelusniak PA, Lacomini M. Rapid synthesis of partially O-methylated alditol acetate standards for GC-MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. Carbohydr Res. 2005;340:731–9.CrossRefGoogle Scholar
  37. 37.
    Bose SK, Barber VA, Alves EF, Kiemle DJ, Stipanovic AJ. A improved method for the hydrolysis of harwood carbohydrate to monomers. Carbohydr Polym. 2009;78:396–401.CrossRefGoogle Scholar
  38. 38.
    Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ. Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour Technol. 2009;100(24):6398–406.CrossRefGoogle Scholar
  39. 39.
    Carvalho de Souza A, Rietkerk T, Selin CGM, Lankhorst PP. A robust and universal NMR method for the compositional analysis of polysaccharides. Carbohydr Polym. 2013;95(2):657–63.CrossRefGoogle Scholar
  40. 40.
    Neumüller KG, Carvalho De Souza A, Van Rijn J, Appeldoorn MM, Streekstra H, Schols HA, Gruppen H. Fast and robust method to determine phenoyl and acetyl esters of polysaccharides by quantitative 1H NMR. J Agric Food Chem. 2013;61(26):6282–7.CrossRefGoogle Scholar
  41. 41.
    Robbins RJ. Phenolic acids in foods; an overview of analytical methodology. J Agric Food Chem. 2003;51:2866–87.CrossRefGoogle Scholar
  42. 42.
    Gruz J, Novák O, Strand M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chem. 2008;111:789–94.CrossRefGoogle Scholar
  43. 43.
    Müller-Maatsch J, Caligiani A, Tedeschi T, Elst K, Sforza S. Simple and validated quantitative 1H NMR method for the determination of methylation, acetylation, and feruloylation degree of pectin. J Agric Food Chem. 2014;62:9081–7.CrossRefGoogle Scholar
  44. 44.
    Bedouet L, Courtois B, Courtois J. Rapid quantification of O-acetyl and O-methyl residues in pectin extracts. Carbohydr Res. 2003;338:379–83.CrossRefGoogle Scholar
  45. 45.
    Mizote A, Ogagiri H, Thei K, Tanaka K. Determination of residues of carboxylic acids (mainly galacturonic acid) and their degree of esterification in industrial pectins by colloid titration with Cat-Floc. Analyst. 1975;100:822–6.CrossRefGoogle Scholar
  46. 46.
    Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, van Droogenbroeck B, Elst K, Sforza S. Pectin content and composition from different food waste streams. Food Chem. 2016;201:37–45.CrossRefGoogle Scholar
  47. 47.
    Grün CH, Sanders P, Van Der Burg M, Schuurbiers E, Van Adrichem L, Van Velzen EJJ, de Roo N, Brunt K, Westphal Y, Schols HA. Strategy to identify and quantify polysaccharide gums in gelled food concentrates. Food Chem. 2015;166:42–9.CrossRefGoogle Scholar
  48. 48.
    Giraudeau P. Quantitative 2D liquid-state NMR. Magn Reson Chem. 2014;52(6):259–72.CrossRefGoogle Scholar
  49. 49.
    Sassaki GL, Guerrini M, Serrato RV, Santana Filho AP, Carlotto J, Simas-Tosin F, Gorin PAJ. Monosaccharide composition of glycans based on Q-HSQC NMR. Carbohydr Polym. 2014;104(1):34–41.CrossRefGoogle Scholar
  50. 50.
    Cianca M, Matulewicz MC, Finch P, Cerezo AS. Determination of the Structures of cystocarpic carrageenans from Gigartina skottsbergii by methylation analysis and NMR spectroscopy. Carbohydr Res. 1993;238:241–8.CrossRefGoogle Scholar
  51. 51.
    Stortz CA, Bacon CE, Cherniak R, Cerezo AS. High-field NMR spectroscopy of cystocarpic and tetrasporic carrageenans from Iridea undulosa. Carbohydr Res. 1994;261:317–26.CrossRefGoogle Scholar
  52. 52.
    Melton L, Smith B. Isolation of plant cell wall and fractionation of cell wall polysaccharides. In: Wrolstad R, Acree T, An H, Decker E, Penner M, Reid D, Schwartz S, Shoemaker C, Sporns P, editors. Current protocols in food analytical chemistry. New York: Wiley; 2001. p. 1–23.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DSM Biotechnology Center Alexander Flemminglaan 1DelftThe Netherlands

Personalised recommendations