Stable-Isotope-Aided NMR Spectroscopy

  • Yohei Miyanoiri
  • Mitsuhiro Takeda
  • Masatsune KainoshoEmail author
Reference work entry


Boundless progress in isotope-aided NMR methods still continues to provide the driving force for developing novel NMR strategies for structural biology research of proteins. In the first edition of this book, we described an overview of the isotope labeling methods available at that time. In this second edition, we will mainly focus on newer isotope-aided NMR methods, such as the methyl-specific labeling and stereo-array isotope labeling (SAIL) methods, which have rapidly developed during the past decade. The methyl-specific labeling is currently used as the most practical technique applicable to large protein complexes and membrane proteins. The standard methyl labeling protocols employ isotope-labeled α-keto acid precursors, which enable selective observations of the methyl groups of Ile, Leu, and Val residues. More recently, the stereo-specific isotope labeling methods of prochiral methyl groups have become available, using either regio-selectively isotope-labeled precursors or stereo-specifically 13CH3-labeled amino acids. We also focus on the stereo-array isotope labeling (SAIL) method, which is a breakthrough isotope labeling technology using stereo- and regio-selectively [2H, 13C, 15N]-labeled amino acids with isotope labeling patterns optimized for NMR studies. Various applications of SAIL and related methods to structural studies, including protein dynamics such as aromatic ring-flipping motions, hydrogen-deuterium exchange rates, conformational analysis, and dynamics about disulfide bonds, will be discussed.


Isotope-aided NMR methods Stereo-array isotope labeling (SAIL) method Large proteins Residue selective labeling Aromatic ring NMR signal Stereo-specific methyl labeling Aromatic ring flipping motion Large-amplitude slow breathing motion (LASBM) Hydrogen exchange rates for side-chain polar groups Deuterium induced isotope shifts Disulfide bond isomerization 


  1. 1.
    Ohki S, Kainosho M. Recent developments in stable-isotope-aided methods for protein NMR spectroscopy. In: Modern magnetic resonance. The Netherlands: Springer; 2006. p. 211–8.Google Scholar
  2. 2.
    Ohki S, Kainosho M. Stable isotope labeling methods for protein NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2008;53:208–26.CrossRefGoogle Scholar
  3. 3.
    GCK R. NMR of macromolecules: a practical approach. Oxford: Oxford University Press; 1993.Google Scholar
  4. 4.
    DM LM. Isotope labeling in solution protein assignment and structural analysis. Prog Nucl Magn Reson Spectrosc. 1994;26:371–419.CrossRefGoogle Scholar
  5. 5.
    Kainosho M. Isotope labelling of macromolecules for structure determinations. Nat Struct Biol. 1997;4:854–7.Google Scholar
  6. 6.
    Ikura M, Kay LE, Bax A. A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990;29:4659–67.CrossRefGoogle Scholar
  7. 7.
    Clore GM, Gronenborn AM. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 1994;239:349–63.CrossRefGoogle Scholar
  8. 8.
    Markley JL, Putter I, Jardetzky O. High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science. 1968;161:1249–51.CrossRefGoogle Scholar
  9. 9.
    Pervushin K, Riek R, Wider G, Wüthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94:12366–71.CrossRefGoogle Scholar
  10. 10.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003;125:10420–8.CrossRefGoogle Scholar
  11. 11.
    Ruschak AM, Kay LE. Proteasome allostery as a population shift between interchanging conformers. Proc Natl Acad Sci U S A. 2012;109(50):E3454–62.CrossRefGoogle Scholar
  12. 12.
    Gardner KH, Kay LE. Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc. 1997;119:7599–600.CrossRefGoogle Scholar
  13. 13.
    Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15 N-, 13C-, 2H-labeled proteins. J Biomol NMR. 1999;13(4):369–74.CrossRefGoogle Scholar
  14. 14.
    Tugarinov V, Kay LE. An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR. 2004;28:165–72.CrossRefGoogle Scholar
  15. 15.
    Kay LE, Muhandiram DR, Farrow NA, Aubin J, Forman-Kay JD. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry. 1996;35:361–8.CrossRefGoogle Scholar
  16. 16.
    Ishima R, Louis JM, Torchia DA. Optimized labeling of 13CHD2 methyl isotopomers in perdeuterated proteins: Potential advantages for 13C relaxation studies of methyl dynamics of larger proteins. J Biomol NMR. 2001;21:167–71.CrossRefGoogle Scholar
  17. 17.
    Gardner KH, Konrat R, Rosen MK, Kay LE. An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N,13C-labeled proteins. J Biomol NMR. 1996;8:351–6.CrossRefGoogle Scholar
  18. 18.
    Tugarinov V, Kay LE. Ile, Leu, and Val methyl assignments of the 723-Residue Malate Synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc. 2003;125:13868–78.CrossRefGoogle Scholar
  19. 19.
    Amero C, Asunción DM, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR. 2011;50:229–36.CrossRefGoogle Scholar
  20. 20.
    Neri D, Szyperski T, Otting G, Senn H, Wüthrich K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional carbon-13 labeling. Biochemistry. 1989;28:7510–6.CrossRefGoogle Scholar
  21. 21.
    Ruschak AM, Velyvis A, Kay LE. A simple strategy for 13C, 1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR. 2010;48:165–72.CrossRefGoogle Scholar
  22. 22.
    Lichtenecker RJ, Weinhäupl K, Reuther L, Schörghuber J, Schmid W, Konrat R. Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems. J Biomol NMR. 2013;57:205–9.CrossRefGoogle Scholar
  23. 23.
    Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Eng. 2010;49(11):1958–62.CrossRefGoogle Scholar
  24. 24.
    Ostler G, Soteriou A, Moody CM, Khan JA, Birdsall B, Carr MD, Young DW, Feeney J. Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of Lactobacillus casei dihydrofolate reductase. FEBS Lett. 1993;318:177–80.CrossRefGoogle Scholar
  25. 25.
    Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J Biomol NMR. 2013;57(3):251–62.CrossRefGoogle Scholar
  26. 26.
    Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. J Biomol NMR. 2013;57:237–49.CrossRefGoogle Scholar
  27. 27.
    Monneau YR, Ishida Y, Rossi P, Saio T, Tzeng SR, Inouye M, Kalodimos CG. Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications. J Biomol NMR. 2016;65(2):99–108.CrossRefGoogle Scholar
  28. 28.
    Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. J Biomol NMR. 2016;65:109–19.CrossRefGoogle Scholar
  29. 29.
    Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P. Optimal isotope labelling for NMR protein structure determinations. Nature. 2006;440:52–7.CrossRefGoogle Scholar
  30. 30.
    Kainosho M, Güntert P. SAIL–stereo-array isotope labeling. Q Rev Biophys. 2009;42:247–300.CrossRefGoogle Scholar
  31. 31.
    Torizawa T, Ono AM, Terauchi T, Kainosho M. NMR assignment methods for the aromatic ring resonances of Phenylalanine and Tyrosine residues in proteins. J Am Chem Soc. 2005;127:12620–6.CrossRefGoogle Scholar
  32. 32.
    Terauchi T, Kobayashi K, Okuma K, Oba M, Nishiyama K, Kainosho M. Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: amino acids for stereoarray isotope labeling technology. Org Lett. 2008;10:2785–7.CrossRefGoogle Scholar
  33. 33.
    Okuma K, Ono AM, Tsuchiya S, Oba M, Nishiyama K, Kainosho M, Terauchi T. Asymmetric synthesis of (2S,3R)- and (2S,3S)-[2-13C;3-2H] glutamic acid. Tetrahedron Lett. 2009;50:1482–4.CrossRefGoogle Scholar
  34. 34.
    Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 1999;442:15–9.CrossRefGoogle Scholar
  35. 35.
    Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M. Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR. 2004;30:311–25.CrossRefGoogle Scholar
  36. 36.
    Takeda M, Ikeya T, Güntert P, Kainosho M. Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc. 2007;2:2896–902.CrossRefGoogle Scholar
  37. 37.
    Takeda M, Ono AM, Terauchi T, Kainosho M. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. J Biomol NMR. 2010;46:45–9.CrossRefGoogle Scholar
  38. 38.
    Miyanoiri Y, Takeda M, Jee J, Ono AM, Okuma K, Terauchi T, et al. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs. J Biomol NMR. 2011;51:425–35.CrossRefGoogle Scholar
  39. 39.
    Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL, et al. Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol. 2008;380:608–22.CrossRefGoogle Scholar
  40. 40.
    Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, et al. Structure of the putative 32 kDa myrosinase binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J. 2008;275:5873–84.CrossRefGoogle Scholar
  41. 41.
    Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M. Hydrogen exchange study on the hydroxyl groups of Serine and Threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups. J Am Chem Soc. 2011;133:17420–7.CrossRefGoogle Scholar
  42. 42.
    Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee JG, Kainosho M, Güntert P. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. J Biomol NMR. 2009;44:261–72.CrossRefGoogle Scholar
  43. 43.
    Schmidt E, Ikeya T, Takeda M, Löhr F, Buchner L, Ito Y, Kainosho M, Güntert P. Automated resonance assignment of the 21 kDa stereo-array isotope labeled thioldisulfide oxidereductase DsbA. J Magn Reson. 2014;249:88–93.CrossRefGoogle Scholar
  44. 44.
    Yang CJ, Takeda M, Terauchi T, Jee J, Kainosho M. Differential large-amplitude breathing motions in the interface of FKBP12-Drug complexes. Biochemistry. 2015;54:6983–95.CrossRefGoogle Scholar
  45. 45.
    Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on Cζ chemical shifts. J Am Chem Soc. 2009;131:18556–62.CrossRefGoogle Scholar
  46. 46.
    Takeda M, Jee J, Terauchi T, Kainosho M. Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13Cβ NMR signals. J Am Chem Soc. 2010;132:6254–60.CrossRefGoogle Scholar
  47. 47.
    Takeda M, Miyanoiri Y, Terauchi T, Yang CJ, Kainosho M. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. J Magn Reson. 2014;241:148–54.CrossRefGoogle Scholar
  48. 48.
    Takeda M, Terauchi T, Kainosho M. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. J Biomol NMR. 2012;52:127–39.CrossRefGoogle Scholar
  49. 49.
    Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. 13C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI). J Biomol NMR. 2016;66:37–53.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yohei Miyanoiri
    • 1
  • Mitsuhiro Takeda
    • 1
    • 2
  • Masatsune Kainosho
    • 1
    • 3
    Email author
  1. 1.Structural Biology Research Center, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Department of Structural BioImaging, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
  3. 3.Graduate School of Science and EngineeringTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations