Skip to main content

Methyl TROSY Spectroscopy to Study Large Biomolecular Complexes

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Solution state NMR spectroscopy is a powerful technique in structural biology that can provide unique information regarding the structure, dynamics, and interactions of biomolecular complexes. For a long time, its experimental range was limited to proteins of modest size. However, in the recent decades, the applicability of the method has been extended such that assemblies with molecular weights far over 100 kDa became amenable to detailed analyses. The breakthroughs that enabled these advances include the development of TROSY-based NMR techniques and procedures to produce samples that are labeled in specific methyl groups.

Here, we discuss these novel approaches to the study of high molecular weight systems, explaining briefly the theoretical background behind the advancements and giving several recent practical examples. The major applications of methyl TROSY NMR spectroscopy are mentioned: studies of intermolecular interactions, protein dynamics, and complex biomolecular structures. With all this, we substantiate our notion that NMR spectroscopy will continue to be a highly valuable and relevant method for investigating large biomolecular complexes that is complementary to other structural techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goto NK, Kay LE. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol. 2000;10(5):585–92.

    Article  CAS  Google Scholar 

  2. Wagner G, Wuthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor. J Mol Biol. 1982;155(3):347–66.

    Article  CAS  Google Scholar 

  3. Williamson MP, Havel TF, Wuthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985;182(2):295–315.

    Article  CAS  Google Scholar 

  4. Fesik SW, Gampe Jr RT, Zuiderweg ER, Kohlbrenner WE, Weigl D. Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO synthetase (27.5 kD). Biochem Biophys Res Commun. 1989;159(2):842–7.

    Article  CAS  Google Scholar 

  5. Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989;28(15):6150–6.

    Article  CAS  Google Scholar 

  6. Ikura M, Kay LE, Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990;29(19):4659–67.

    Article  CAS  Google Scholar 

  7. Crespi HL, Rosenberg RM, Katz JJ. Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science. 1968;161(3843):795–6.

    Article  CAS  Google Scholar 

  8. Markley JL, Putter I, Jardetzky O. High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science. 1968;161(3847):1249–51.

    Article  CAS  Google Scholar 

  9. Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system by multidimensional NMR. Biochemistry. 1997;36(9):2517–30.

    Article  CAS  Google Scholar 

  10. Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol. 2000;300(1):197–212.

    Article  CAS  Google Scholar 

  11. Pervushin K, Riek R, Wider G, Wuthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366–71.

    Article  CAS  Google Scholar 

  12. Tugarinov V, Choy WY, Orekhov VY, Kay LE. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A. 2005;102(3):622–7.

    Article  CAS  Google Scholar 

  13. Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K. NMR analysis of a 900K GroEL GroES complex. Nature. 2002;418(6894):207–11.

    Article  CAS  Google Scholar 

  14. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003;125(34):10420–8.

    Article  CAS  Google Scholar 

  15. Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988;204(1):155–64.

    Article  CAS  Google Scholar 

  16. Sprangers R, Kay LE. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature. 2007;445(7128):618–22.

    Article  CAS  Google Scholar 

  17. Gardner KH, Kay LE. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct. 1998;27:357–406.

    Article  CAS  Google Scholar 

  18. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol. 2015;32:113–22.

    Article  CAS  Google Scholar 

  19. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR. 1999;13(4):369–74.

    Article  CAS  Google Scholar 

  20. Gardner KH, Kay LE. Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc. 1997;119(32):7599–600.

    Article  CAS  Google Scholar 

  21. Ruschak AM, Velyvis A, Kay LE. A simple strategy for (1)(3)C, (1)H labeling at the Ile-gamma2 methyl position in highly deuterated proteins. J Biomol NMR. 2010;48(3):129–35.

    Article  CAS  Google Scholar 

  22. Gans P, Hamelin O, Sounier R, Ayala I, Dura MA, Amero CD, et al. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem. 2010;49(11):1958–62.

    Article  CAS  Google Scholar 

  23. Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J Biomol NMR. 2013;57(3):251–62.

    Article  CAS  Google Scholar 

  24. Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. J Biomol NMR. 2013;57(3):237–49.

    Article  CAS  Google Scholar 

  25. Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W. Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem. 2007;8(6):610–2.

    Article  CAS  Google Scholar 

  26. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR. 2009;43(2):111–9.

    Article  CAS  Google Scholar 

  27. Velyvis A, Ruschak AM, Kay LE. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One. 2012;7(9):e43725.

    Article  CAS  Google Scholar 

  28. Tugarinov V, Kay LE. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc. 2003;125(45):13868–78.

    Article  CAS  Google Scholar 

  29. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell. 2007;131(4):756–69.

    Article  CAS  Google Scholar 

  30. Godoy-Ruiz R, Guo C, Tugarinov V. Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc. 2010;132(51):18340–50.

    Article  CAS  Google Scholar 

  31. Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537(7619):202–6.

    Article  CAS  Google Scholar 

  32. Rosenzweig R, Farber P, Velyvis A, Rennella E, Latham MP, Kay LE. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc Natl Acad Sci U S A. 2015;112(50):E6872–81.

    Article  CAS  Google Scholar 

  33. Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. 2003;125(35):10561–9.

    Article  CAS  Google Scholar 

  34. Berrade L, Camarero JA. Expressed protein ligation: a resourceful tool to study protein structure and function. Cell Mol Life Sci. 2009;66(24):3909–22.

    Article  CAS  Google Scholar 

  35. Freiburger L, Sonntag M, Hennig J, Li J, Zou P, Sattler M. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J Biomol NMR. 2015;63(1):1–8.

    Article  CAS  Google Scholar 

  36. Mund M, Overbeck JH, Ullmann J, Sprangers R. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Angew Chem. 2013;52(43):11401–5.

    Article  CAS  Google Scholar 

  37. Grzesiek S, Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993;3(2):185–204.

    Article  CAS  Google Scholar 

  38. Tugarinov V, Kay LE. Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc. 2003;125(19):5701–6.

    Article  CAS  Google Scholar 

  39. Mishra SH, Frueh DP. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps. J Biomol NMR. 2015;62(3):281–90.

    Article  CAS  Google Scholar 

  40. Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, Forman-Kay J, et al. The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J Biol Chem. 2010;285(9):6308–15.

    Article  CAS  Google Scholar 

  41. Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci U S A. 2005;102(46):16678–83.

    Article  CAS  Google Scholar 

  42. Amero C, Asuncion Dura M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, et al. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR. 2011;50(3):229–36.

    Article  CAS  Google Scholar 

  43. Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Structure-based assignment of Ile, Leu, and Val methyl groups in the active and inactive forms of the mitogen-activated protein kinase extracellular signal-regulated kinase 2. Biochemistry. 2015;54(28):4307–19.

    Article  CAS  Google Scholar 

  44. John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G. Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc. 2007;129(44):13749–57.

    Article  CAS  Google Scholar 

  45. Venditti V, Fawzi NL, Clore GM. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. J Biomol NMR. 2011;51(3):319–28.

    Article  CAS  Google Scholar 

  46. Ollerenshaw JE, Tugarinov V, Kay LE. Methyl TROSY: explanation and experimental verification. Magn Reson Chem. 2003;41(10):843–52.

    Article  CAS  Google Scholar 

  47. Rosenzweig R, Kay LE. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu Rev Biochem. 2014;83:291–315.

    Article  CAS  Google Scholar 

  48. Williamson MP. Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc. 2013;73:1–16.

    Article  CAS  Google Scholar 

  49. Karagoz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, et al. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A. 2011;108(2):580–5.

    Article  Google Scholar 

  50. Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Moran Luengo T, et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell. 2014;156(5):963–74.

    Article  CAS  Google Scholar 

  51. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science. 2013;339(6123):1080–3.

    Article  CAS  Google Scholar 

  52. Stoffregen MC, Schwer MM, Renschler FA, Wiesner S. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure. 2012;20(4):573–81.

    Article  CAS  Google Scholar 

  53. Mari S, Ruetalo N, Maspero E, Stoffregen MC, Pasqualato S, Polo S, et al. Structural and functional framework for the autoinhibition of Nedd4-family ubiquitin ligases. Structure. 2014;22(11):1639–49.

    Article  CAS  Google Scholar 

  54. Cvetkovic MA, Wurm JP, Audin MJ, Schutz S, Sprangers R. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol. 2017. https://doi.org/10.1038/nchembio.2328.

  55. Religa TL, Kay LE. Optimal methyl labeling for studies of supra-molecular systems. J Biomol NMR. 2010;47(3):163–9.

    Article  CAS  Google Scholar 

  56. Audin MJ, Dorn G, Fromm SA, Reiss K, Schutz S, Vorlander MK, et al. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem. 2013;52(32):8312–6.

    Article  CAS  Google Scholar 

  57. Religa TL, Sprangers R, Kay LE. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science. 2010;328(5974):98–102.

    Article  CAS  Google Scholar 

  58. Neu A, Neu U, Fuchs AL, Schlager B, Sprangers R. An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nat Chem Biol. 2015;11(9):697–704.

    Article  CAS  Google Scholar 

  59. Palmer 3rd AG, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–38.

    Article  CAS  Google Scholar 

  60. Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J Am Chem Soc. 2004;126(12):3964–73.

    Article  CAS  Google Scholar 

  61. Skrynnikov NR, Mulder FA, Hon B, Dahlquist FW, Kay LE. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2001;123(19):4556–66.

    Article  CAS  Google Scholar 

  62. Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE. A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR. 2007;38(1):79–88.

    Article  CAS  Google Scholar 

  63. Tugarinov V, Kay LE. Separating degenerate (1)H transitions in methyl group probes for single-quantum (1)H-CPMG relaxation dispersion NMR spectroscopy. J Am Chem Soc. 2007;129(30):9514–21.

    Article  CAS  Google Scholar 

  64. Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res. 2016;44(6):2962–73.

    Article  Google Scholar 

  65. Yuwen T, Vallurupalli P, Kay LE. Enhancing the sensitivity of CPMG relaxation dispersion to conformational exchange processes by multiple-quantum spectroscopy. Angew Chem. 2016;55(38):11490–4.

    Article  CAS  Google Scholar 

  66. Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature. 2013;502(7472):519–23.

    Article  CAS  Google Scholar 

  67. Huang R, Ripstein ZA, Augustyniak R, Lazniewski M, Ginalski K, Kay LE, et al. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc Natl Acad Sci U S A. 2016;113(29):E4190–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco Sprangers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cvetkovic, M.A., Sprangers, R. (2018). Methyl TROSY Spectroscopy to Study Large Biomolecular Complexes. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_45

Download citation

Publish with us

Policies and ethics