Advertisement

Methyl TROSY Spectroscopy to Study Large Biomolecular Complexes

Reference work entry

Abstract

Solution state NMR spectroscopy is a powerful technique in structural biology that can provide unique information regarding the structure, dynamics, and interactions of biomolecular complexes. For a long time, its experimental range was limited to proteins of modest size. However, in the recent decades, the applicability of the method has been extended such that assemblies with molecular weights far over 100 kDa became amenable to detailed analyses. The breakthroughs that enabled these advances include the development of TROSY-based NMR techniques and procedures to produce samples that are labeled in specific methyl groups.

Here, we discuss these novel approaches to the study of high molecular weight systems, explaining briefly the theoretical background behind the advancements and giving several recent practical examples. The major applications of methyl TROSY NMR spectroscopy are mentioned: studies of intermolecular interactions, protein dynamics, and complex biomolecular structures. With all this, we substantiate our notion that NMR spectroscopy will continue to be a highly valuable and relevant method for investigating large biomolecular complexes that is complementary to other structural techniques.

Keywords

Methyl TROSY Large molecular machine Methyl-group labeling Biomolecular structure Biomolecular interactions Protein dynamics Methyl-group resonance assignment Relaxation dispersion Longitudinal exchange Methionine scanning LEGO NMR Segmental isotope labeling RNA protein interactions 

References

  1. 1.
    Goto NK, Kay LE. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol. 2000;10(5):585–92.CrossRefGoogle Scholar
  2. 2.
    Wagner G, Wuthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor. J Mol Biol. 1982;155(3):347–66.CrossRefGoogle Scholar
  3. 3.
    Williamson MP, Havel TF, Wuthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985;182(2):295–315.CrossRefGoogle Scholar
  4. 4.
    Fesik SW, Gampe Jr RT, Zuiderweg ER, Kohlbrenner WE, Weigl D. Heteronuclear three-dimensional NMR spectroscopy applied to CMP-KDO synthetase (27.5 kD). Biochem Biophys Res Commun. 1989;159(2):842–7.CrossRefGoogle Scholar
  5. 5.
    Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989;28(15):6150–6.CrossRefGoogle Scholar
  6. 6.
    Ikura M, Kay LE, Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990;29(19):4659–67.CrossRefGoogle Scholar
  7. 7.
    Crespi HL, Rosenberg RM, Katz JJ. Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science. 1968;161(3843):795–6.CrossRefGoogle Scholar
  8. 8.
    Markley JL, Putter I, Jardetzky O. High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science. 1968;161(3847):1249–51.CrossRefGoogle Scholar
  9. 9.
    Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system by multidimensional NMR. Biochemistry. 1997;36(9):2517–30.CrossRefGoogle Scholar
  10. 10.
    Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol. 2000;300(1):197–212.CrossRefGoogle Scholar
  11. 11.
    Pervushin K, Riek R, Wider G, Wuthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997;94(23):12366–71.CrossRefGoogle Scholar
  12. 12.
    Tugarinov V, Choy WY, Orekhov VY, Kay LE. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A. 2005;102(3):622–7.CrossRefGoogle Scholar
  13. 13.
    Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K. NMR analysis of a 900K GroEL GroES complex. Nature. 2002;418(6894):207–11.CrossRefGoogle Scholar
  14. 14.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003;125(34):10420–8.CrossRefGoogle Scholar
  15. 15.
    Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988;204(1):155–64.CrossRefGoogle Scholar
  16. 16.
    Sprangers R, Kay LE. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature. 2007;445(7128):618–22.CrossRefGoogle Scholar
  17. 17.
    Gardner KH, Kay LE. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct. 1998;27:357–406.CrossRefGoogle Scholar
  18. 18.
    Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol. 2015;32:113–22.CrossRefGoogle Scholar
  19. 19.
    Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR. 1999;13(4):369–74.CrossRefGoogle Scholar
  20. 20.
    Gardner KH, Kay LE. Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc. 1997;119(32):7599–600.CrossRefGoogle Scholar
  21. 21.
    Ruschak AM, Velyvis A, Kay LE. A simple strategy for (1)(3)C, (1)H labeling at the Ile-gamma2 methyl position in highly deuterated proteins. J Biomol NMR. 2010;48(3):129–35.CrossRefGoogle Scholar
  22. 22.
    Gans P, Hamelin O, Sounier R, Ayala I, Dura MA, Amero CD, et al. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem. 2010;49(11):1958–62.CrossRefGoogle Scholar
  23. 23.
    Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J Biomol NMR. 2013;57(3):251–62.CrossRefGoogle Scholar
  24. 24.
    Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. J Biomol NMR. 2013;57(3):237–49.CrossRefGoogle Scholar
  25. 25.
    Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W. Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem. 2007;8(6):610–2.CrossRefGoogle Scholar
  26. 26.
    Ayala I, Sounier R, Use N, Gans P, Boisbouvier J. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR. 2009;43(2):111–9.CrossRefGoogle Scholar
  27. 27.
    Velyvis A, Ruschak AM, Kay LE. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS One. 2012;7(9):e43725.CrossRefGoogle Scholar
  28. 28.
    Tugarinov V, Kay LE. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc. 2003;125(45):13868–78.CrossRefGoogle Scholar
  29. 29.
    Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell. 2007;131(4):756–69.CrossRefGoogle Scholar
  30. 30.
    Godoy-Ruiz R, Guo C, Tugarinov V. Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc. 2010;132(51):18340–50.CrossRefGoogle Scholar
  31. 31.
    Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537(7619):202–6.CrossRefGoogle Scholar
  32. 32.
    Rosenzweig R, Farber P, Velyvis A, Rennella E, Latham MP, Kay LE. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc Natl Acad Sci U S A. 2015;112(50):E6872–81.CrossRefGoogle Scholar
  33. 33.
    Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW. Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. 2003;125(35):10561–9.CrossRefGoogle Scholar
  34. 34.
    Berrade L, Camarero JA. Expressed protein ligation: a resourceful tool to study protein structure and function. Cell Mol Life Sci. 2009;66(24):3909–22.CrossRefGoogle Scholar
  35. 35.
    Freiburger L, Sonntag M, Hennig J, Li J, Zou P, Sattler M. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J Biomol NMR. 2015;63(1):1–8.CrossRefGoogle Scholar
  36. 36.
    Mund M, Overbeck JH, Ullmann J, Sprangers R. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Angew Chem. 2013;52(43):11401–5.CrossRefGoogle Scholar
  37. 37.
    Grzesiek S, Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993;3(2):185–204.CrossRefGoogle Scholar
  38. 38.
    Tugarinov V, Kay LE. Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc. 2003;125(19):5701–6.CrossRefGoogle Scholar
  39. 39.
    Mishra SH, Frueh DP. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps. J Biomol NMR. 2015;62(3):281–90.CrossRefGoogle Scholar
  40. 40.
    Ogunjimi AA, Wiesner S, Briant DJ, Varelas X, Sicheri F, Forman-Kay J, et al. The ubiquitin binding region of the Smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J Biol Chem. 2010;285(9):6308–15.CrossRefGoogle Scholar
  41. 41.
    Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci U S A. 2005;102(46):16678–83.CrossRefGoogle Scholar
  42. 42.
    Amero C, Asuncion Dura M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, et al. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J Biomol NMR. 2011;50(3):229–36.CrossRefGoogle Scholar
  43. 43.
    Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Structure-based assignment of Ile, Leu, and Val methyl groups in the active and inactive forms of the mitogen-activated protein kinase extracellular signal-regulated kinase 2. Biochemistry. 2015;54(28):4307–19.CrossRefGoogle Scholar
  44. 44.
    John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G. Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc. 2007;129(44):13749–57.CrossRefGoogle Scholar
  45. 45.
    Venditti V, Fawzi NL, Clore GM. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. J Biomol NMR. 2011;51(3):319–28.CrossRefGoogle Scholar
  46. 46.
    Ollerenshaw JE, Tugarinov V, Kay LE. Methyl TROSY: explanation and experimental verification. Magn Reson Chem. 2003;41(10):843–52.CrossRefGoogle Scholar
  47. 47.
    Rosenzweig R, Kay LE. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu Rev Biochem. 2014;83:291–315.CrossRefGoogle Scholar
  48. 48.
    Williamson MP. Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc. 2013;73:1–16.CrossRefGoogle Scholar
  49. 49.
    Karagoz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, et al. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A. 2011;108(2):580–5.CrossRefGoogle Scholar
  50. 50.
    Karagoz GE, Duarte AM, Akoury E, Ippel H, Biernat J, Moran Luengo T, et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell. 2014;156(5):963–74.CrossRefGoogle Scholar
  51. 51.
    Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science. 2013;339(6123):1080–3.CrossRefGoogle Scholar
  52. 52.
    Stoffregen MC, Schwer MM, Renschler FA, Wiesner S. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure. 2012;20(4):573–81.CrossRefGoogle Scholar
  53. 53.
    Mari S, Ruetalo N, Maspero E, Stoffregen MC, Pasqualato S, Polo S, et al. Structural and functional framework for the autoinhibition of Nedd4-family ubiquitin ligases. Structure. 2014;22(11):1639–49.CrossRefGoogle Scholar
  54. 54.
    Cvetkovic MA, Wurm JP, Audin MJ, Schutz S, Sprangers R. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol. 2017.  https://doi.org/10.1038/nchembio.2328.
  55. 55.
    Religa TL, Kay LE. Optimal methyl labeling for studies of supra-molecular systems. J Biomol NMR. 2010;47(3):163–9.CrossRefGoogle Scholar
  56. 56.
    Audin MJ, Dorn G, Fromm SA, Reiss K, Schutz S, Vorlander MK, et al. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem. 2013;52(32):8312–6.CrossRefGoogle Scholar
  57. 57.
    Religa TL, Sprangers R, Kay LE. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science. 2010;328(5974):98–102.CrossRefGoogle Scholar
  58. 58.
    Neu A, Neu U, Fuchs AL, Schlager B, Sprangers R. An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nat Chem Biol. 2015;11(9):697–704.CrossRefGoogle Scholar
  59. 59.
    Palmer 3rd AG, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–38.CrossRefGoogle Scholar
  60. 60.
    Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J Am Chem Soc. 2004;126(12):3964–73.CrossRefGoogle Scholar
  61. 61.
    Skrynnikov NR, Mulder FA, Hon B, Dahlquist FW, Kay LE. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2001;123(19):4556–66.CrossRefGoogle Scholar
  62. 62.
    Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE. A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR. 2007;38(1):79–88.CrossRefGoogle Scholar
  63. 63.
    Tugarinov V, Kay LE. Separating degenerate (1)H transitions in methyl group probes for single-quantum (1)H-CPMG relaxation dispersion NMR spectroscopy. J Am Chem Soc. 2007;129(30):9514–21.CrossRefGoogle Scholar
  64. 64.
    Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res. 2016;44(6):2962–73.CrossRefGoogle Scholar
  65. 65.
    Yuwen T, Vallurupalli P, Kay LE. Enhancing the sensitivity of CPMG relaxation dispersion to conformational exchange processes by multiple-quantum spectroscopy. Angew Chem. 2016;55(38):11490–4.CrossRefGoogle Scholar
  66. 66.
    Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature. 2013;502(7472):519–23.CrossRefGoogle Scholar
  67. 67.
    Huang R, Ripstein ZA, Augustyniak R, Lazniewski M, Ginalski K, Kay LE, et al. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc Natl Acad Sci U S A. 2016;113(29):E4190–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Developmental BiologyTübingenGermany

Personalised recommendations