Advertisement

Solid-State NMR Investigations of the Hydration and Molecular Dynamics of Collagen in Biological Tissue

  • Daniel Huster
Reference work entry

Abstract

Collagen is the most abundant protein in the human body and plays a central role in the biological function of various hard and soft tissues. With a unique amino acid composition and three dimensional structure, collagen confers tensile strength to bone, ligaments, tendon, cartilage, and other tissues. Solid-state NMR spectroscopy is a well-suited method to study intact biological tissues. In particular 13C NMR measurements under magic-angle spinning conditions provide insights into the structure, dynamics, and hydration of collagen in various biological tissues. Furthermore, quantitative 13C-31P distance measurements have helped characterizing the organic/inorganic interface of bone tissue. Hydration of the densely packed collagen fibrils has been found to significantly influence the dynamics of the molecular segments of collagen. In the NMR spectra, the water content of biological tissue has a profound impact on the resolution of the 13C NMR spectra of collagen. Furthermore, molecular order parameters, which report the amplitudes of the fluctuations of the bond vectors of the molecular segments of collagen with correlation times shorter than ~40 μs, provide a sensitive measure of the microscopic hydration properties of the protein in these tissues. Along with the analytical power of NMR spectroscopy, solid-state NMR investigations of the collagen dynamics provide a useful tool to assess the quality of de novo synthesized collagen also in tissue engineering studies. Altogether, collagen perfectly adapts to its molecular environment in hard and soft tissue to contribute to the basic strength, shape retention, and viscoelastic properties of biological matter.

Keywords

Solid-state NMR CPMAS REDOR DipShift INEPT 13C NMR 31P NMR H/D exchange Hydration Dynamics Order parameter Bone Cartilage Tissue engineering Fibrils Collagen 

Notes

Acknowledgments

This research has been supported by the Deutsche Forschungsgemeinschaft (TRR-SFB 67, A06).

References

  1. 1.
    Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys. 2016;18:24802–11.CrossRefGoogle Scholar
  2. 2.
    Ricard-Blum S, Ruggiero F, van der Rest M. The collagen superfarmily. Top Curr Chem. 2005;247:35–84.CrossRefGoogle Scholar
  3. 3.
    Brinckmann J. Collagens at a glance. Top Curr Chem. 2005;247:1–2.CrossRefGoogle Scholar
  4. 4.
    Engel J, Bächinger HP. Structure, stability and folding of the collagen triple helix. Top Curr Chem. 2005;247:7–33.CrossRefGoogle Scholar
  5. 5.
    Eyre DR, Wu JJ. Collagen cross-links. Collagen. 2005;247:207–29.CrossRefGoogle Scholar
  6. 6.
    Torchia DA. Solid state NMR studies of molecular motion in collagen fibrils. Methods Enzymol. 1982;82:174–86.CrossRefGoogle Scholar
  7. 7.
    Schiller J, Naji L, Huster D, Kaufmann J, Arnold K. 1H and 13C HR-MAS NMR investigations on native and enzymatically-digested bovine cartilage. MAGMA. 2001;13:19–27.Google Scholar
  8. 8.
    Batchelder LS, Sullivan CE, Jelinski LW, Torchia DA. Characterization of leucine side-chain reorientation in collagen- fibrils by solid-state 2H NMR. Proc Natl Acad Sci U S A. 1982;79:386–9.CrossRefGoogle Scholar
  9. 9.
    Sarkar SK, Young PE, Sullivan CE, Torchia DA. Detection of cis and trans X-Pro peptide bonds in proteins by 13C NMR: application to collagen. Proc Natl Acad Sci U S A. 1984;81:4800–3.CrossRefGoogle Scholar
  10. 10.
    Sarkar SK, Sullivan CE, Torchia DA. Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 nuclear magnetic resonance relaxation study. Biochemistry. 1985;24:2348–54.CrossRefGoogle Scholar
  11. 11.
    Sarkar SK, Hiyama Y, Niu CH, Young PE, Gerig JT, Torchia DA. Molecular dynamics of collagen side chains in hard and soft tissues. A multinuclear magnetic resonance study. Biochemistry. 1987;26:6793–800.CrossRefGoogle Scholar
  12. 12.
    Stejskal EO, Schaefer J. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc. 1976;98:1031–2.CrossRefGoogle Scholar
  13. 13.
    Saito H, Tabeta R, Shoji A, Ozaki T, Ando I, Miyata T. A high-resolution 13C-NMR study of collagenlike polypeptides and collagen fibrils in solid state studied by the cross-polarization-magic angle-spinning method. Manifestation of conformation-dependent 13C chemical shifts and application to conformational characterization. Biopolymers. 1984;23:2279–97.CrossRefGoogle Scholar
  14. 14.
    Saito H, Yokoi M. A 13C NMR study on collagens in the solid state: hydration/dehydration- induced conformational change of collagen and detection of internal motions. J Biochem. 1992;111:376–82.CrossRefGoogle Scholar
  15. 15.
    Torchia DA, VanderHart DL. C-13 magnetic resonance evidence for anisotropic molecular motion in collagen fibrils. J Mol Biol. 1976;104:315–21.CrossRefGoogle Scholar
  16. 16.
    Jelinski LW, Sullivan CE, Torchia DA. 2H NMR study of molecular motion in collagen fibrils. Nature. 1980;284:531–4.CrossRefGoogle Scholar
  17. 17.
    Reichert D, Pascui O, deAzevedo ER, Bonagamba TJ, Arnold K, Huster D. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magn Reson Chem. 2004;42:276–84.CrossRefGoogle Scholar
  18. 18.
    Huster D. Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu Rep NMR Spectrosc. 2008;64:127–59.CrossRefGoogle Scholar
  19. 19.
    Rai RK, Singh C, Sinha N. Predominant role of water in native collagen assembly inside the bone matrix. J Phys Chem B. 2015;119:201–11.CrossRefGoogle Scholar
  20. 20.
    Mroue KH, Nishiyama Y, Kumar PM, Gong B, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci Rep. 2015;5:11991.CrossRefGoogle Scholar
  21. 21.
    Chow WY, Rajan R, Muller KH, Reid DG, Skepper JN, Wong WC, Brooks RA, Green M, Bihan D, Farndale RW, Slatter DA, Shanahan CM, Duer MJ. NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization. Science. 2014;344:742–6.CrossRefGoogle Scholar
  22. 22.
    Zernia G, Huster D. Investigation of tissue collagen dynamics by solid-state NMR spectroscopy. In: Webb G, editor. Handbook of modern magnetic resonance. New York: Kluwer; 2008. p. 87–92.Google Scholar
  23. 23.
    Huster D, Schiller J, Arnold K. Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid state NMR spectroscopy. Magn Reson Med. 2002;48:624–32.CrossRefGoogle Scholar
  24. 24.
    Schmidt-Rohr K, Clauss J, Spiess HW. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules. 1992;25:3273–7.CrossRefGoogle Scholar
  25. 25.
    van Rossum B-J, de Groot CP, Ladizhansky V, Vega S, de Groot HJM. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc. 2000;122:3465–72.CrossRefGoogle Scholar
  26. 26.
    Hong M, Yao X, Jakes KS, Huster D. Investigation of molecular motions by magic-angle cross-polarization NMR spectroscopy. J Phys Chem B. 2002;106:7355–64.CrossRefGoogle Scholar
  27. 27.
    Munowitz MG, Griffin RG, Bodenhausen G, Huang TH. Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc. 1981;103:2529–33.CrossRefGoogle Scholar
  28. 28.
    Huster D, Schiller J, Arnold K. Dynamics of collagen in articular cartilage studied by solid-state NMR methods. In: de Ceuninck F, Pastoureau P, Sabatini M, editors. Osteoarthritis: methods and protocols. Totowa: Humana Press; 2004. p. 307–22.Google Scholar
  29. 29.
    Zernia G, Huster D. Collagen dynamics in articular cartilage under osmotic pressure. NMR Biomed. 2006;19:1010–9.CrossRefGoogle Scholar
  30. 30.
    Aliev AE, Courtier-Murias D. Water scaffolding in collagen: implications on protein dynamics as revealed by solid-state NMR. Biopolymers. 2014;101:246–56.CrossRefGoogle Scholar
  31. 31.
    Parsegian VA, Rand RP, Rau DC. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94.CrossRefGoogle Scholar
  32. 32.
    Gawrisch K, Arnold K, Dietze K, Schulze U. Hydration forces between phospholipid membranes and the polyethylene glycol induced membrane approach. In: Markov M, Blank M, editors. Electromagnetic fields and biomembranes. New York: Plenum Press; 1988. p. 9–18.CrossRefGoogle Scholar
  33. 33.
    Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D. The G protein-coupled neuropeptide Y receptor type 2 is highly dynamic in lipid membranes as revealed by solid-state NMR spectroscopy. Chemistry. 2014;20:4986–92.CrossRefGoogle Scholar
  34. 34.
    Palmer III AG, Williams J, McDermott A. Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem. 1996;100:13293–310.CrossRefGoogle Scholar
  35. 35.
    Xu J, Zhu P, Morris MD, Ramamoorthy A. Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage. J Phys Chem B. 2011;115:9948–54.CrossRefGoogle Scholar
  36. 36.
    Saar G, Shinar H, Navon G. Comparison of the effects of mechanical and osmotic pressures on the collagen fiber architecture of intact and proteoglycan-depleted articular cartilage. Eur Biophys J. 2007;36:529–38.CrossRefGoogle Scholar
  37. 37.
    Schulz R, Höhle S, Zernia G, Zscharnack M, Schiller J, Bader A, Arnold K, Huster D. Analysis of extracellular matrix production in artificial cartilage constructs by histology, immunocytochemistry, mass spectrometry, and NMR spectroscopy. J Nanosci Nanotechnol. 2006;6:2368–81.CrossRefGoogle Scholar
  38. 38.
    Haberhauer M, Zernia G, Deiwick A, Pösel C, Bader A, Huster D, Schulz R. Cartilage tissue engineering in plasma and whole blood scaffolds. Adv Mater. 2008;20:2061–7.CrossRefGoogle Scholar
  39. 39.
    Schulz RM, Haberhauer M, Zernia G, Posel C, Thummler C, Somerson JS, Huster D. Comprehensive characterization of chondrocyte cultures in plasma and whole blood biomatrices for cartilage tissue engineering. J Tissue Eng Regen Med. 2014;8:566–77.Google Scholar
  40. 40.
    Tropp J, Blumenthal NC, Waugh JS. Phosphorus NMR-study of solid amorphous calcium-phosphate. J Am Chem Soc. 1983;105:22–6.CrossRefGoogle Scholar
  41. 41.
    Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry. 1984;23:6115–20.CrossRefGoogle Scholar
  42. 42.
    Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int. 2003;72:610–26.CrossRefGoogle Scholar
  43. 43.
    Xu J, Zhu P, Gan Z, Sahar N, Tecklenburg M, Morris MD, Kohn DH, Ramamoorthy A. Natural-abundance 43Ca solid-state NMR spectroscopy of bone. J Am Chem Soc. 2010;132:11504–9.CrossRefGoogle Scholar
  44. 44.
    Kolodziejski W. Solid-state NMR studies of bone. Top Curr Chem. 2005;246:235–70.CrossRefGoogle Scholar
  45. 45.
    Mroue KH, MacKinnon N, Xu J, Zhu P, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. High-resolution structural insights into bone: a solid-state NMR relaxation study utilizing paramagnetic doping. J Phys Chem B. 2012;116:11656–61.CrossRefGoogle Scholar
  46. 46.
    Zhu P, Xu J, Sahar N, Morris MD, Kohn DH, Ramamoorthy A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J Am Chem Soc. 2009;131:17064–5.CrossRefGoogle Scholar
  47. 47.
    Rai RK, Sinha N. Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J Phys Chem C. 2011;115:14219–27.CrossRefGoogle Scholar
  48. 48.
    Schulz J, Pretzsch M, Khalaf I, Deiwick A, Scheidt HA, von Salis-Soglio G, Bader A, Huster D. Quantitative monitoring of extracellular matrix production in bone implants by 13C and 31P solid-state NMR spectroscopy. Calcif Tissue Int. 2007;80:275–85.CrossRefGoogle Scholar
  49. 49.
    Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A. 2010;107:22425–9.CrossRefGoogle Scholar
  50. 50.
    Wise ER, Maltsev S, Davies ME, Duer MJ, Jaeger C, Loveridge N, Murray RC, Reid DG. The organic-mineral interface in bone is predominantly polysaccharide. Chem Mater. 2007;19:5055–7.CrossRefGoogle Scholar
  51. 51.
    Mroue KH, Xu J, Zhu P, Morris MD, Ramamoorthy A. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy. Phys Chem Chem Phys. 2016;18:18687–91.CrossRefGoogle Scholar
  52. 52.
    Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, Lorenz A, Vashishth D. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface. J Phys Chem C Nanomater Interfaces. 2012;116:6320–31.CrossRefGoogle Scholar
  53. 53.
    Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One. 2013;8:e83478.CrossRefGoogle Scholar
  54. 54.
    Fernandez-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J. 2002;82:522–9.CrossRefGoogle Scholar
  55. 55.
    Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42:193–9.CrossRefGoogle Scholar
  56. 56.
    Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A. 2005;102:11450–5.CrossRefGoogle Scholar
  57. 57.
    Marchandise X, Belgrand P, Legrand AP. Solid-state 31P NMR spectroscopy of bone and bone substitutes. Magn Reson Med. 1992;28:1–8.CrossRefGoogle Scholar
  58. 58.
    Weber F, Böhme J, Scheidt HA, Gründer W, Rammelt S, Hacker M, Schulz-Siegmund M, Huster D. 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed. 2012;25:464–75.CrossRefGoogle Scholar
  59. 59.
    Penk A, Forster Y, Scheidt HA, Nimptsch A, Hacker MC, Schulz-Siegmund M, Ahnert P, Schiller J, Rammelt S, Huster D. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats. Magn Reson Med. 2013;70:925–35.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Medical Physics and BiophysicsLeipzig UniversityLeipzigGermany

Personalised recommendations