Skip to main content

Solid-State NMR Investigations of the Hydration and Molecular Dynamics of Collagen in Biological Tissue

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Collagen is the most abundant protein in the human body and plays a central role in the biological function of various hard and soft tissues. With a unique amino acid composition and three dimensional structure, collagen confers tensile strength to bone, ligaments, tendon, cartilage, and other tissues. Solid-state NMR spectroscopy is a well-suited method to study intact biological tissues. In particular 13C NMR measurements under magic-angle spinning conditions provide insights into the structure, dynamics, and hydration of collagen in various biological tissues. Furthermore, quantitative 13C-31P distance measurements have helped characterizing the organic/inorganic interface of bone tissue. Hydration of the densely packed collagen fibrils has been found to significantly influence the dynamics of the molecular segments of collagen. In the NMR spectra, the water content of biological tissue has a profound impact on the resolution of the 13C NMR spectra of collagen. Furthermore, molecular order parameters, which report the amplitudes of the fluctuations of the bond vectors of the molecular segments of collagen with correlation times shorter than ~40 μs, provide a sensitive measure of the microscopic hydration properties of the protein in these tissues. Along with the analytical power of NMR spectroscopy, solid-state NMR investigations of the collagen dynamics provide a useful tool to assess the quality of de novo synthesized collagen also in tissue engineering studies. Altogether, collagen perfectly adapts to its molecular environment in hard and soft tissue to contribute to the basic strength, shape retention, and viscoelastic properties of biological matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys. 2016;18:24802–11.

    Article  CAS  Google Scholar 

  2. Ricard-Blum S, Ruggiero F, van der Rest M. The collagen superfarmily. Top Curr Chem. 2005;247:35–84.

    Article  CAS  Google Scholar 

  3. Brinckmann J. Collagens at a glance. Top Curr Chem. 2005;247:1–2.

    Article  CAS  Google Scholar 

  4. Engel J, Bächinger HP. Structure, stability and folding of the collagen triple helix. Top Curr Chem. 2005;247:7–33.

    Article  CAS  Google Scholar 

  5. Eyre DR, Wu JJ. Collagen cross-links. Collagen. 2005;247:207–29.

    Article  CAS  Google Scholar 

  6. Torchia DA. Solid state NMR studies of molecular motion in collagen fibrils. Methods Enzymol. 1982;82:174–86.

    Article  CAS  Google Scholar 

  7. Schiller J, Naji L, Huster D, Kaufmann J, Arnold K. 1H and 13C HR-MAS NMR investigations on native and enzymatically-digested bovine cartilage. MAGMA. 2001;13:19–27.

    CAS  Google Scholar 

  8. Batchelder LS, Sullivan CE, Jelinski LW, Torchia DA. Characterization of leucine side-chain reorientation in collagen- fibrils by solid-state 2H NMR. Proc Natl Acad Sci U S A. 1982;79:386–9.

    Article  CAS  Google Scholar 

  9. Sarkar SK, Young PE, Sullivan CE, Torchia DA. Detection of cis and trans X-Pro peptide bonds in proteins by 13C NMR: application to collagen. Proc Natl Acad Sci U S A. 1984;81:4800–3.

    Article  CAS  Google Scholar 

  10. Sarkar SK, Sullivan CE, Torchia DA. Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: a carbon-13 nuclear magnetic resonance relaxation study. Biochemistry. 1985;24:2348–54.

    Article  CAS  Google Scholar 

  11. Sarkar SK, Hiyama Y, Niu CH, Young PE, Gerig JT, Torchia DA. Molecular dynamics of collagen side chains in hard and soft tissues. A multinuclear magnetic resonance study. Biochemistry. 1987;26:6793–800.

    Article  CAS  Google Scholar 

  12. Stejskal EO, Schaefer J. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc. 1976;98:1031–2.

    Article  Google Scholar 

  13. Saito H, Tabeta R, Shoji A, Ozaki T, Ando I, Miyata T. A high-resolution 13C-NMR study of collagenlike polypeptides and collagen fibrils in solid state studied by the cross-polarization-magic angle-spinning method. Manifestation of conformation-dependent 13C chemical shifts and application to conformational characterization. Biopolymers. 1984;23:2279–97.

    Article  CAS  Google Scholar 

  14. Saito H, Yokoi M. A 13C NMR study on collagens in the solid state: hydration/dehydration- induced conformational change of collagen and detection of internal motions. J Biochem. 1992;111:376–82.

    Article  CAS  Google Scholar 

  15. Torchia DA, VanderHart DL. C-13 magnetic resonance evidence for anisotropic molecular motion in collagen fibrils. J Mol Biol. 1976;104:315–21.

    Article  CAS  Google Scholar 

  16. Jelinski LW, Sullivan CE, Torchia DA. 2H NMR study of molecular motion in collagen fibrils. Nature. 1980;284:531–4.

    Article  CAS  Google Scholar 

  17. Reichert D, Pascui O, deAzevedo ER, Bonagamba TJ, Arnold K, Huster D. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magn Reson Chem. 2004;42:276–84.

    Article  CAS  Google Scholar 

  18. Huster D. Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu Rep NMR Spectrosc. 2008;64:127–59.

    Article  CAS  Google Scholar 

  19. Rai RK, Singh C, Sinha N. Predominant role of water in native collagen assembly inside the bone matrix. J Phys Chem B. 2015;119:201–11.

    Article  CAS  Google Scholar 

  20. Mroue KH, Nishiyama Y, Kumar PM, Gong B, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci Rep. 2015;5:11991.

    Article  Google Scholar 

  21. Chow WY, Rajan R, Muller KH, Reid DG, Skepper JN, Wong WC, Brooks RA, Green M, Bihan D, Farndale RW, Slatter DA, Shanahan CM, Duer MJ. NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization. Science. 2014;344:742–6.

    Article  CAS  Google Scholar 

  22. Zernia G, Huster D. Investigation of tissue collagen dynamics by solid-state NMR spectroscopy. In: Webb G, editor. Handbook of modern magnetic resonance. New York: Kluwer; 2008. p. 87–92.

    Google Scholar 

  23. Huster D, Schiller J, Arnold K. Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid state NMR spectroscopy. Magn Reson Med. 2002;48:624–32.

    Article  CAS  Google Scholar 

  24. Schmidt-Rohr K, Clauss J, Spiess HW. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules. 1992;25:3273–7.

    Article  CAS  Google Scholar 

  25. van Rossum B-J, de Groot CP, Ladizhansky V, Vega S, de Groot HJM. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc. 2000;122:3465–72.

    Article  CAS  Google Scholar 

  26. Hong M, Yao X, Jakes KS, Huster D. Investigation of molecular motions by magic-angle cross-polarization NMR spectroscopy. J Phys Chem B. 2002;106:7355–64.

    Article  CAS  Google Scholar 

  27. Munowitz MG, Griffin RG, Bodenhausen G, Huang TH. Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc. 1981;103:2529–33.

    Article  CAS  Google Scholar 

  28. Huster D, Schiller J, Arnold K. Dynamics of collagen in articular cartilage studied by solid-state NMR methods. In: de Ceuninck F, Pastoureau P, Sabatini M, editors. Osteoarthritis: methods and protocols. Totowa: Humana Press; 2004. p. 307–22.

    Google Scholar 

  29. Zernia G, Huster D. Collagen dynamics in articular cartilage under osmotic pressure. NMR Biomed. 2006;19:1010–9.

    Article  CAS  Google Scholar 

  30. Aliev AE, Courtier-Murias D. Water scaffolding in collagen: implications on protein dynamics as revealed by solid-state NMR. Biopolymers. 2014;101:246–56.

    Article  CAS  Google Scholar 

  31. Parsegian VA, Rand RP, Rau DC. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94.

    Article  CAS  Google Scholar 

  32. Gawrisch K, Arnold K, Dietze K, Schulze U. Hydration forces between phospholipid membranes and the polyethylene glycol induced membrane approach. In: Markov M, Blank M, editors. Electromagnetic fields and biomembranes. New York: Plenum Press; 1988. p. 9–18.

    Chapter  Google Scholar 

  33. Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D. The G protein-coupled neuropeptide Y receptor type 2 is highly dynamic in lipid membranes as revealed by solid-state NMR spectroscopy. Chemistry. 2014;20:4986–92.

    Article  CAS  Google Scholar 

  34. Palmer III AG, Williams J, McDermott A. Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem. 1996;100:13293–310.

    Article  CAS  Google Scholar 

  35. Xu J, Zhu P, Morris MD, Ramamoorthy A. Solid-state NMR spectroscopy provides atomic-level insights into the dehydration of cartilage. J Phys Chem B. 2011;115:9948–54.

    Article  CAS  Google Scholar 

  36. Saar G, Shinar H, Navon G. Comparison of the effects of mechanical and osmotic pressures on the collagen fiber architecture of intact and proteoglycan-depleted articular cartilage. Eur Biophys J. 2007;36:529–38.

    Article  CAS  Google Scholar 

  37. Schulz R, Höhle S, Zernia G, Zscharnack M, Schiller J, Bader A, Arnold K, Huster D. Analysis of extracellular matrix production in artificial cartilage constructs by histology, immunocytochemistry, mass spectrometry, and NMR spectroscopy. J Nanosci Nanotechnol. 2006;6:2368–81.

    Article  CAS  Google Scholar 

  38. Haberhauer M, Zernia G, Deiwick A, Pösel C, Bader A, Huster D, Schulz R. Cartilage tissue engineering in plasma and whole blood scaffolds. Adv Mater. 2008;20:2061–7.

    Article  CAS  Google Scholar 

  39. Schulz RM, Haberhauer M, Zernia G, Posel C, Thummler C, Somerson JS, Huster D. Comprehensive characterization of chondrocyte cultures in plasma and whole blood biomatrices for cartilage tissue engineering. J Tissue Eng Regen Med. 2014;8:566–77.

    CAS  Google Scholar 

  40. Tropp J, Blumenthal NC, Waugh JS. Phosphorus NMR-study of solid amorphous calcium-phosphate. J Am Chem Soc. 1983;105:22–6.

    Article  CAS  Google Scholar 

  41. Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochemistry. 1984;23:6115–20.

    Article  CAS  Google Scholar 

  42. Wu Y, Ackerman JL, Strawich ES, Rey C, Kim HM, Glimcher MJ. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization. Calcif Tissue Int. 2003;72:610–26.

    Article  CAS  Google Scholar 

  43. Xu J, Zhu P, Gan Z, Sahar N, Tecklenburg M, Morris MD, Kohn DH, Ramamoorthy A. Natural-abundance 43Ca solid-state NMR spectroscopy of bone. J Am Chem Soc. 2010;132:11504–9.

    Article  CAS  Google Scholar 

  44. Kolodziejski W. Solid-state NMR studies of bone. Top Curr Chem. 2005;246:235–70.

    Article  CAS  Google Scholar 

  45. Mroue KH, MacKinnon N, Xu J, Zhu P, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. High-resolution structural insights into bone: a solid-state NMR relaxation study utilizing paramagnetic doping. J Phys Chem B. 2012;116:11656–61.

    Article  CAS  Google Scholar 

  46. Zhu P, Xu J, Sahar N, Morris MD, Kohn DH, Ramamoorthy A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J Am Chem Soc. 2009;131:17064–5.

    Article  CAS  Google Scholar 

  47. Rai RK, Sinha N. Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J Phys Chem C. 2011;115:14219–27.

    Article  CAS  Google Scholar 

  48. Schulz J, Pretzsch M, Khalaf I, Deiwick A, Scheidt HA, von Salis-Soglio G, Bader A, Huster D. Quantitative monitoring of extracellular matrix production in bone implants by 13C and 31P solid-state NMR spectroscopy. Calcif Tissue Int. 2007;80:275–85.

    Article  CAS  Google Scholar 

  49. Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc Natl Acad Sci U S A. 2010;107:22425–9.

    Article  CAS  Google Scholar 

  50. Wise ER, Maltsev S, Davies ME, Duer MJ, Jaeger C, Loveridge N, Murray RC, Reid DG. The organic-mineral interface in bone is predominantly polysaccharide. Chem Mater. 2007;19:5055–7.

    Article  CAS  Google Scholar 

  51. Mroue KH, Xu J, Zhu P, Morris MD, Ramamoorthy A. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy. Phys Chem Chem Phys. 2016;18:18687–91.

    Article  CAS  Google Scholar 

  52. Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, Lorenz A, Vashishth D. Solid state NMR investigation of intact human bone quality: balancing issues and insight into the structure at the organic-mineral interface. J Phys Chem C Nanomater Interfaces. 2012;116:6320–31.

    Article  CAS  Google Scholar 

  53. Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One. 2013;8:e83478.

    Article  CAS  Google Scholar 

  54. Fernandez-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J. 2002;82:522–9.

    Article  CAS  Google Scholar 

  55. Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42:193–9.

    Article  CAS  Google Scholar 

  56. Stevens MM, Marini RP, Schaefer D, Aronson J, Langer R, Shastri VP. In vivo engineering of organs: the bone bioreactor. Proc Natl Acad Sci U S A. 2005;102:11450–5.

    Article  CAS  Google Scholar 

  57. Marchandise X, Belgrand P, Legrand AP. Solid-state 31P NMR spectroscopy of bone and bone substitutes. Magn Reson Med. 1992;28:1–8.

    Article  CAS  Google Scholar 

  58. Weber F, Böhme J, Scheidt HA, Gründer W, Rammelt S, Hacker M, Schulz-Siegmund M, Huster D. 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed. 2012;25:464–75.

    Article  CAS  Google Scholar 

  59. Penk A, Forster Y, Scheidt HA, Nimptsch A, Hacker MC, Schulz-Siegmund M, Ahnert P, Schiller J, Rammelt S, Huster D. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats. Magn Reson Med. 2013;70:925–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Deutsche Forschungsgemeinschaft (TRR-SFB 67, A06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Huster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huster, D. (2018). Solid-State NMR Investigations of the Hydration and Molecular Dynamics of Collagen in Biological Tissue. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_43

Download citation

Publish with us

Policies and ethics