Structure Analysis of Bombyx mori Silk Fibroin Using NMR

  • Shunsuke Kametani
  • Tetsuo AsakuraEmail author
Reference work entry


Silks from silkworms and spiders continue to attract attention of researchers in many fields, biochemistry, biophysics, analytical chemistry, polymer chemistry, polymer and textile technologies, and biomaterials. Advances in the most famous silk, Bombyx mori silk fibroin (SF) research, provide many new insights into the structure and dynamics of SF. Here, recent NMR analyses about the structures and dynamics of SF were reviewed. The solution structure of SF stored in the middle silk gland of Bombyx mori silkworm was determined using solution NMR in atomic level. This was type II β-turn structure which was close to random coil but existed in the aggregated states. On the other hand, a new structure of the crystalline regions of the SF fiber after spinning (Silk II) was proposed using several solid- state NMR techniques, and well-known Marsh-Pauling structural model for Silk II was denied partially. The conformational change from SF stored in the middle silk gland to SF fiber was monitored by the change in the fraction of several different conformations determined using 13C CP/MAS NMR and discussed in detail on the basis of the primary structure of SF. The hydrations of SF and microscopic interaction with water molecules were also studied by solid state NMR and 2H solution relaxation measurements. Thus, these NMR analyses gave new details relating to the structure and dynamics of SF, which are relevant in light of current interest in the design of man-made new SF and novel SF-based biomaterials.


Bombyx mori silk fibroin Solution NMR 13C selectively labeling of silk fibroin Silk I and Silk II Type ΙΙ β-turn Antiparallel β-sheet 13C CP/MAS NMR 13C DD/MAS NMR 1H DQMAS NMR 2H T1-T2 Silk fibroin fiber Hydration of silk fibroin Crystalline and noncrystalline region 


  1. 1.
    Asakura T. In: Miller T, editor. Biotechnology of Silk. Springer; Dordrecht, 2014. Google Scholar
  2. 2.
    Vepari C, Kaplan DL. Prog Polym Sci. 2007;32:991–1007.CrossRefGoogle Scholar
  3. 3.
    Fu C, Shao Z, Vollrath F. Chem Commun. 2009;43:6515–29.CrossRefGoogle Scholar
  4. 4.
    Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Acta Biomater. 2012;8:289–301.CrossRefGoogle Scholar
  5. 5.
    Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC. Prog Polym Sci. 2014;39:251–67.CrossRefGoogle Scholar
  6. 6.
    Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Proteins. 2001;44:119–22.CrossRefGoogle Scholar
  7. 7.
    Asakura T, Okushita K, Williamson MP. Macromolecules. 2015;48:2345–57.CrossRefGoogle Scholar
  8. 8.
    Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu KJ. Mol Biol. 2001;306:291–305.CrossRefGoogle Scholar
  9. 9.
    Asakura T, Ohgo K, Komatsu K, Kanenari M, Okuyama K. Macromolecules. 2005;38:7397–403.CrossRefGoogle Scholar
  10. 10.
    Asakura T, Suzuki Y, Yazawa K, Aoki A, Nishiyama Y, Nishimura K, Suzuki F, Kaji H. Macromolecules. 2013;46:8046–50.CrossRefGoogle Scholar
  11. 11.
    Asakura T, Sato Y, Aoki A. Macromolecules. 2015;48:5761–9.CrossRefGoogle Scholar
  12. 12.
    Asakura T, Endo M, Hirayama M, Arai H, Aoki A, Tasei Y. Int J Mol Sci. 2016;17:1517–32.CrossRefGoogle Scholar
  13. 13.
    Suzuki Y, Yamazaki T, Aoki A, Shindo H, Asakura T. Biomacromolecules. 2014;15:104–12.CrossRefGoogle Scholar
  14. 14.
    Marsh RE, Corey RB, Pauling L. Biochim Biophys Acta. 1955;16:1–34.CrossRefGoogle Scholar
  15. 15.
    Takahashi Y, Gehoh M, Yuzuriha K. Int J Biol Macromol. 1999;24:127–38.CrossRefGoogle Scholar
  16. 16.
    Asakura T, Suzuki Y, Nakazawa Y, Yazawa K, Holland GP, Yarger JL. Prog Nucl Magn Reson Spectrosc. 2013;69:23–68.CrossRefGoogle Scholar
  17. 17.
    Mo C, Wu P, Chen X, Shao Z. Vib Spectrosc. 2009;51:105–9.CrossRefGoogle Scholar
  18. 18.
    Percot A, Colomban P, Paris C, Dinh HM, Wojcieszak M, Mauchamp B. Vib Spectrosc. 2014;73:79–89.CrossRefGoogle Scholar
  19. 19.
    Paquet-Mercier F, Lefèvre T, Auger M, Pézolet M. Soft Matter. 2013;9:208–15.CrossRefGoogle Scholar
  20. 20.
    Yazawa K, Ishida K, Masunaga H, Hikima T, Numata K. Biomacromolecules. 2016;17:1057–66. and references therein.CrossRefGoogle Scholar
  21. 21.
    Asakura T, Demura M, Watanabe Y, Sato K. J Polm Sci Part-B. 1992;30:3–699.Google Scholar
  22. 22.
    Yang Z, Liivak O, Seidel A, LaVerde G, Zax DB, Jelinski LWJ. Am Chem Soc. 2000;122:9019–25.CrossRefGoogle Scholar
  23. 23.
    Rodin VV, Knight DP. Biofizika. 2004;49:800–8.Google Scholar
  24. 24.
    Holland GP, Lewis RV, Yarger JL. J Am Chem Soc. 2004;126:5867–72.CrossRefGoogle Scholar
  25. 25.
    Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL. Biomacromolecules. 2008;9:651–7.CrossRefGoogle Scholar
  26. 26.
    Sun C, Boutis GS. New J Phys. 2011;13:025026.CrossRefGoogle Scholar
  27. 27.
    Asakura T, Suzuki Y, Nakazawa Y, Holland GP, Yarger JL. Soft Matt. 2013;9:11440–50.CrossRefGoogle Scholar
  28. 28.
    Ukpebor OT, Shah A, Bazov E, Boutis GS. Soft Matt. 2014;10:773–85.CrossRefGoogle Scholar
  29. 29.
    Asakura T, Isobe K, Aoki A, Kametani S. Macromolecules. 2015;48:8062–9.CrossRefGoogle Scholar
  30. 30.
    Asakura T, Isobe K, Kametani S, Ukpebor OT, Silverstein MC, Boutis GS. Acta Biomaterialia. 2017; in press.Google Scholar
  31. 31.
    Shen Y, Bax AJ. Biomol NMR. 2012;52:211–32.CrossRefGoogle Scholar
  32. 32.
    Shen Y, Bax AJ. Biomol. NMR. 2013;56:227–41.CrossRefGoogle Scholar
  33. 33.
    Asakura T, Suzuki H, Watanabe Y. Macromolecules. 1983;16:1024–6.CrossRefGoogle Scholar
  34. 34.
    Asakura T, Watanabe Y, Uchida A, Minagawa H. Macromolecules. 1984;17:1075–81.CrossRefGoogle Scholar
  35. 35.
    Asakura T. Makromol. Chem. Rapid Commun. 1986;12:755–9.CrossRefGoogle Scholar
  36. 36.
    Yamane T, Umemura K, Asakura T. Macromolecules. 2002;35:8831–8.CrossRefGoogle Scholar
  37. 37.
    Fraser B, MacRae TP. Conformations of fibrous proteins and related synthetic polypeptides. New York: Academic Press; 1973.Google Scholar
  38. 38.
    Lotz B, Cesari FC. Biochimie. 1979;61:205–14.CrossRefGoogle Scholar
  39. 39.
    Fossey SA, Nemethy G, Gibson KD, Scheraga HA. Biopolymers. 1991;31:1529–41.CrossRefGoogle Scholar
  40. 40.
    Schnell I, Brown SP, Low HY, Ishida H, Spiess HWJ. Am Chem Soc. 1998;120:11784–95.CrossRefGoogle Scholar
  41. 41.
    Brown SP. Solid State Nucl Magn Reson. 2012;41:1–27.CrossRefGoogle Scholar
  42. 42.
    Yamauchi K, Yamasaki S, Takahashi R, Asakura T. Solid State Nucl Magn Reson. 2010;38:27–30.CrossRefGoogle Scholar
  43. 43.
    Asakura T, Yao J, Yamane T, Umemura K, Ulrich ASJ. Am Chem Soc. 2002;124:8794–5.CrossRefGoogle Scholar
  44. 44.
    Asakura T, Yao J. Protein Sci. 2002;11:2706–13.CrossRefGoogle Scholar
  45. 45.
    Asakura T, Ohta T, Kametani S, Okushita K, Yazawa K, Nishiyama Y, Nishimura K, Aoki A, Suzuyki F, Kaji H, Ulrich AS, Williamson MP. Macromolecules. 2015;48:28–36.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei, TokyoJapan

Personalised recommendations