Skip to main content

Solid-State NMR Studies of Supported Transition Metal Catalysts and Nanoparticles

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

The following book chapter reviews recent advances in solid-state NMR spectroscopy of heterogenized transition metal catalysts that have widespread application potential for technical reactions, i.e., to produce structural building blocks for pharmaceuticals. Catalysts based on mesoporous solid support materials such as silica or crystalline nanocellulose (CNC) as well as catalysts based on inorganic organic hybrid nanoparticles are discussed in terms of their synthesis, application, and physicochemical characterization. The power of 1D and 2D multinuclear solid-state NMR techniques of sensitive nuclei such as 31P as well as of quantitative 19F solid-state NMR is demonstrated at selected examples of heterogeneous rhodium and iridium catalysts. For less sensitive nuclei especially of 15N, the combination of high-field solid-state NMR with dynamic nuclear polarization (DNP) is presented as an effective method to dramatically boost the sensitivity of NMR and allow measurements of samples with natural abundance of 15N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barton DHR. The invention of chemical reactions. Aldrichimica Acta. 1990;23:3–10.

    Google Scholar 

  2. Schwarz H. Aktivierung von methan. Angew Chem. 1991;103(7):837–8.

    Article  CAS  Google Scholar 

  3. Rosowski F, Hornung A, Hinrichsen O, Herein D, Muhler M, Ertl G. Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics. Appl Catal A-Gen. 1997;151(2):443–60.

    Article  CAS  Google Scholar 

  4. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci. 2008;1(10):636–9.

    Article  CAS  Google Scholar 

  5. Schloegl R. Catalytic synthesis of ammonia – a “never-ending story”?. Angew Chem Int Ed. 2003;42(18):2004–8.

    Article  CAS  Google Scholar 

  6. Knowles WS. Asymmetric hydrogenation. Acc Chem Res. 1983;16(3):106–12.

    Article  CAS  Google Scholar 

  7. Trindade AF, Gois PMP, Afonso CAM. Recyclable stereoselective catalysts. Chem Rev. 2009;109(2):418–514.

    Article  CAS  Google Scholar 

  8. Fan QH, Li YM, Chan ASC. Recoverable catalysts for asymmetric organic synthesis. Chem Rev. 2002;102(10):3385–465.

    Article  CAS  Google Scholar 

  9. Bianchini C, Barbaro P. Recent aspects of asymmetric catalysis by immobilized chiral metal catalysts. Top Catal. 2002;19(1):17–32.

    Google Scholar 

  10. Cole-Hamilton DJ. Homogeneous catalysis – new approaches to catalyst separation, recovery, and recycling. Science. 2003;299(5613):1702–6.

    Article  CAS  Google Scholar 

  11. Sayah R, Framery E, Dufaud V. Asymmetric hydrogenation using wilkinson-type rhodium complexes immobilized onto mesoporous silica. Green Chem. 2009;11(10):1694–702.

    Article  CAS  Google Scholar 

  12. Wagner HH, Hausmann H, Hoelderich WF. Immobilization of rhodium diphosphine complexes on mesoporous Al-MCM-41 materials: catalysts for enantioselective hydrogenation. J Catal. 2001;203(1):150–6.

    Article  CAS  Google Scholar 

  13. Sayah R, Le Floch M, Framery E, Dufaud V. Immobilization of chiral cationic diphosphine rhodium complexes in nanopores of mesoporous silica and application in asymmetric hydrogenation. J Mol Catal A-Chem. 2010;315(1):51–9.

    Article  CAS  Google Scholar 

  14. Crosman A, Hoelderich WF. Enantioselective hydrogenation over immobilized rhodium diphosphine complexes on mesostructured materials. Catal Today. 2007;121(1–2):130–9.

    Article  CAS  Google Scholar 

  15. Fukaya N, Onozawa S, Ueda M, Miyaji T, Takagi Y, Sakakura T, Yasuda H. Application of tripodal linker units to immobilized rhodium complex catalysts for asymmetric hydrogenation. Chem Lett. 2011;40(2):212–4.

    Article  CAS  Google Scholar 

  16. Swennenhuis BHG, Chen RF, van Leeuwen P, de Vries JG, Kamer PCJ. Supported chiral monodentate ligands in rhodium-catalysed asymmetric hydrogenation and palladium-catalysed asymmetric allylic alkylation. Eur J Org Chem. 2009;(33):5796–803.

    Article  CAS  Google Scholar 

  17. Frater T, Gubicza L, Szollosy A, Bakos J. Enantioselective hydrogenation in ionic liquids: recyclability of the Rh(COD)(DIPAMP) BF4 catalyst in bmim BF4. Inorg Chim Acta. 2006;359(9):2756–9.

    Article  CAS  Google Scholar 

  18. Podolean I, Hardacre C, Goodrich P, Brun N, Backov R, Coman SM, Parvulescu VI. Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes. Catal Today. 2013;200:63–73.

    Article  CAS  Google Scholar 

  19. Simons C, Hanefeld U, Arends I, Sheldon RA, Maschmeyer T. Noncovalent anchoring of asymmetric hydrogenation catalysts on a new mesoporous aluminosilicate: application and solvent effects. Chem-Eur J. 2004;10(22):5829–35.

    Article  CAS  Google Scholar 

  20. Simons C, Hanefeld U, Arends I, Minnaard AJ, Maschmeyer T, Sheldon RA. Efficient immobilisation of Rh-MonoPhos on the aluminosilicate AlTUD-1. Chem Commun. 2004;(24):2830–1.

    Google Scholar 

  21. Fraile JM, Garcia JI, Mayoral JA. Noncovalent immobilization of enantioselective catalysts. Chem Rev. 2009;109(2):360–417.

    Article  CAS  Google Scholar 

  22. Kleman P, Barbaro P, Pizzano A. Chiral Rh phosphine-phosphite catalysts immobilized on iionic resins for the enantioselective hydrogenation of olefins in water. Green Chem. 2015;17(7):3826–36.

    Article  CAS  Google Scholar 

  23. Pachon LD, Rothenberg G. Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem. 2008;22(6):288–99.

    Article  CAS  Google Scholar 

  24. Amiens C, Chaudret B, Ciuculescu-Pradines D, Colliere V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. New J Chem. 2013;37(11):3374–401.

    Article  CAS  Google Scholar 

  25. Lara P, Philippot K, Chaudret B. Organometallic ruthenium nanoparticles: a comparative study of the influence of the stabilizer on their characteristics and reactivity. ChemCatChem. 2013;5(1):28–45.

    Article  CAS  Google Scholar 

  26. Philippot K, Lignier P, Chaudret B. Organometallic Ruthenium Nanoparticles and Catalysis. In: Bruneau C, Dixneuf PH, editors. Ruthenium in catalysis, vol. 48. 2014. p. 319–70.

    Google Scholar 

  27. Amiens C, Ciuculescu-Pradines D, Philippot K. Controlled metal nanostructures: fertile ground for coordination chemists. Coord Chem Rev. 2016;308:409–32.

    Article  CAS  Google Scholar 

  28. Overhauser AW. Polarization of nuclei in metals. Phys Rev. 1953;92(2):411–5.

    Article  CAS  Google Scholar 

  29. Carver TP, Slichter CP. Polarization of nuclear spins in metals. Phys Rev. 1953;92(1):212–3.

    Article  CAS  Google Scholar 

  30. Felch KL, Danly BG, Jory HR, Kreischer KE, Lawson W, Levush B, Temkin RJ. Characteristics and applications of fast-wave gyrodevices. Proc IEEE. 1999;87:752–81.

    Article  Google Scholar 

  31. Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys Rev Lett. 1993;71(21):3561.

    Article  CAS  Google Scholar 

  32. Maly T, Debelouchina GT, Bajaj VS, Hu K, Joo C, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PC, Herzfeld J, Temkin RJ, Griffin RG. Dynamic nuclear polarization at high magnetic fields. J Chem Phys. 2008;128:052211.

    Article  CAS  Google Scholar 

  33. Cheng CY, Han SI. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems. Annu Rev Phys Chem. 2013;64:507–32.

    Article  CAS  Google Scholar 

  34. Akbey Ü, Franks WT, Linden A, Orwick-Rvdmark M, Lange L, Oschkinat H. Dynamic nuclear polarization enhanced NMR in the solid-state. In: Kuhn LT, editor. Topics in current chemistry, vol. 338. Berlin/Heidelberg: Springer; 2013. p. 181–228.

    Chapter  Google Scholar 

  35. Perras FA, Viger-Gravel J, Burgess KMN, Bryce DL. Signal enhancement in solid-state NMR of quadrupolar nuclei. Solid State Nucl Magn. 2013;51–52:1–15.

    Article  CAS  Google Scholar 

  36. Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res. 2013;46(9):1942–51.

    Article  CAS  Google Scholar 

  37. Griesinger C, Bennati M, Vieth HM, Luchinat C, Parigi G, Hoefer P, Engelke F, Glaser SJ, Denysenkov V, Prisner TF. Dynamic nuclear polarization at high magnetic fields in liquids. Prog NMR Spectrosc. 2013;64:4–28.

    Article  CAS  Google Scholar 

  38. Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG. High frequency dynamic nuclear polarization. Acc Chem Res. 2014;46(9):1933–41.

    Article  CAS  Google Scholar 

  39. Kobayashi T, Perras FA, Slowing II, Sadow AD, Pruski M. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research. Acs Catal. 2015;5(12):7055–62.

    Article  CAS  Google Scholar 

  40. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mccullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc. 1992;114(27):10834–43.

    Article  CAS  Google Scholar 

  41. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.

    Article  CAS  Google Scholar 

  42. Valkenberg MH, Hölderich WF. Preparation and use of hybrid organic–inorganic catalysts. Catal Rev. 2002;44(2):321–74.

    Article  CAS  Google Scholar 

  43. Joseph T, Deshpande SS, Halligudi SB, Vinu A, Ernst S, Hartmann M. Hydrogenation of olefins over hydrido chlorocarbonyl tris-(triphenylphosphine) ruthenium(II) complex immobilized on functionalized MCM-41 and SBA-15. J Mol Catal A-Chem. 2003;206(1–2):13–21.

    Article  CAS  Google Scholar 

  44. Leitmannova E, Jirasek P, Rak J, Potucka L, Kacer P, Cerveny L. Terminal Ca parts per thousand C triple bond hydrogenation using immobilized wilkinson’s catalyst. Res Chem Intermed. 2010;36(5):511–22.

    Article  CAS  Google Scholar 

  45. Elias X, Pleixats R, Man MWC, Moreau JJE. Hybrid organic-inorganic materials derived from a monosilylated hoveyda-type ligand as recyclable diene and enyne metathesis catalysts. Adv Synth Catal. 2007;349(10):1701–13.

    Article  CAS  Google Scholar 

  46. Trilla M, Pleixats R, Man MWC, Bied C, Moreau JJE. Hybrid organic-inorganic materials from di-(2-pyridyl)methylamine-palladium dichloride complex as recoverable catalysts for suzuki, heck and sonogashira reactions. Adv Synth Catal. 2008;350(4):577–90.

    Article  CAS  Google Scholar 

  47. Fraile JM, Garcia JI, Mayoral JA. Recent advances in the immobilization of chiral catalysts containing bis(oxazolines) and related ligands. Coord Chem Rev. 2008;252(5–7):624–46.

    Article  CAS  Google Scholar 

  48. Sommer WJ, Weck M. Supported N-heterocyclic carbene complexes in catalysis. Coord Chem Rev. 2007;251(5–6):860–73.

    Article  CAS  Google Scholar 

  49. Zhao XS, Bao XY, Guo W, Lee FY. Immobilizing catalysts on porous materials. Mater Today. 2006;9(3):32–9.

    Article  CAS  Google Scholar 

  50. Brunel D, Bellocq N, Sutra P, Cauvel A, Lasperas M, Moreau P, Di Renzo F, Galarneau A, Fajula F. Transition-metal ligands bound onto the micelle-templated silica surface. Coord Chem Rev. 1998;180:1085–108.

    Article  Google Scholar 

  51. Corma A, Kumar D. Possibilities of mesoporous materials in catalysis. In: Bonneviot L, Beland F, Danumah C, Giasson S, Kaliaguine S, editors. Mesoporous molecular sieves 1998, vol. 117. Amsterdam: Elsevier Science Bv; 1998. p. 201–22.

    Google Scholar 

  52. Bianchini C, Dal Santo V, Meli A, Moneti S, Moreno M, Oberhauser W, Psaro R, Sordelli L, Vizza F. A comparison between silica-immobilized ruthenium(II) single sites and silica-supported ruthenium nanoparticles in the catalytic hydrogenation of model hetero- and polyaromatics contained in raw oil materials. J Catal. 2003;213(1):47–62.

    Article  CAS  Google Scholar 

  53. Albert K, Bayer E. Characterization of bonded phases by solid-state NMR spectroscopy. J Chromatogr. 1991;544(1–2):345–70.

    Article  CAS  Google Scholar 

  54. Bluemel J. Linkers and catalysts immobilized on oxide supports: new insights by solid-state NMR spectroscopy. Coord Chem Rev. 2008;252:2410–23.

    Article  CAS  Google Scholar 

  55. Guenther J, Reibenspies J, Bluemel J. Synthesis, immobilization, MAS and HR-MAS NMR of a new chelate phosphine linker system, and catalysis by rhodium adducts thereof. Adv Synth Catal. 2011;353(2–3):443–60.

    Article  CAS  Google Scholar 

  56. Beele B, Guenther J, Perera M, Stach M, Oeser T, Bluemel J. New linker systems for superior immobilized catalysts. New J Chem. 2010;34(12):2729–31.

    Article  CAS  Google Scholar 

  57. Rapp JR, Huang Y, Natella M, Cai Y, Lin VSY, Pruski M. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts. Solid State NMR. 2009;35(2):82–6.

    Article  CAS  Google Scholar 

  58. Mao K, Wiench JW, Lin VSY, Pruski M. Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: studies of organic-inorganic hybrid materials. J Magn Reson. 2009;196(1):92–5.

    Article  CAS  Google Scholar 

  59. Wiench JW, Avadhut YS, Maity N, Bhaduri S, Lahiri GK, Pruski M, Ganapathy S. Characterization of covalent linkages in organically functionalized MCM-41 mesoporous materials by solid-state NMR and theoretical calculations. J Phys Chem B. 2007;111(15):3877–85.

    Article  CAS  Google Scholar 

  60. Merckle C, Bluemel J. Bifunctional phosphines immobilized on inorganic oxides. Chem Mater. 2001;13(10):3617–23.

    Article  CAS  Google Scholar 

  61. Merckle C, Bluemel J. Improved rhodium hydrogenation catalysts immobilized on silica. Top Catal. 2005;34(1–4):5–15.

    Article  CAS  Google Scholar 

  62. Potrzebowski MJ, Kazmierski S, Kassassir H, Miksa B. Phosphorus-31 NMR spectroscopy of condensed matter. In: Webb GA, editor. Annual reports on Nmr spectroscopy, vol. 70. San Diego: Elsevier Academic Press; 2010. p. 35–114.

    Google Scholar 

  63. Eichele K, Wasylishen RE, Corrigan JF, Taylor NJ, Carty AJ, Feindel KW, Bernard GM. Phosphorus chemical shift tensors of phosphido ligands in ruthenium carbonyl compounds: P-31 NMR spectroscopy of single-crystal and powder samples, and Ab-initio calculations. J Am Chem Soc. 2002;124(7):1541–52.

    Article  CAS  Google Scholar 

  64. Gee M, Wasylishen RE, Ragogna PJ, Burford N, McDonald R. Characterization of indirect P-31-P-31 spin-spin coupling and phosphorus chemical shift tensors in pentaphenylphosphinophosphonium tetrachlorogallate, Ph3P-PPh2 GaCl4. Can J Chem. 2002;80(11):1488–500.

    Article  CAS  Google Scholar 

  65. Adamczyk A, Xu Y, Walaszek B, Roelofs F, Pery T, Pelzer K, Philippot K, Chaudret B, Limbach H-H, Breitzke H, Buntkowsky G. Solid state and gas phase NMR studies of immobilized catalysts and catalytic active nanoparticles. Top Catal. 2008;48:75–83.

    Article  CAS  Google Scholar 

  66. Gutmann T, Grünberg A, Rothermel N, Werner M, Srour M, Abdulhussain S, Tan SL, Xu YP, Breitzke H, Buntkowsky G. Solid-state NMR concepts for the investigation of supported transition metal catalysts and nanoparticles. Solid State Nucl Magn. 2013;55–56:1–11.

    Article  CAS  Google Scholar 

  67. Gruenberg A, Xu YP, Breitzke H, Buntkowsky G. Solid-state NMR characterization of wilkinson’s catalyst immobilized in mesoporous SBA-3 silica. Chem-Eur J. 2010;16(23):6993–8.

    Article  CAS  Google Scholar 

  68. Huang L, Wu JC, Kawi S. Aminated MCM-41-tethered wilkinson’s complex: active immobilized catalyst precursor for cyclohexene hydroformylation. React Kinet Catal Lett. 2004;82:65–71.

    Article  CAS  Google Scholar 

  69. Gutmann T, Ratajczyk T, Xu Y, Breitzke H, Gruenberg A, Dillenberger S, Bommerich U, Trantzschel T, Bernarding J, Buntkowsky G. Understanding the leaching properties of heterogenized catalysts: a combined solid state and PHIP NMR study. Solid State Nucl Magn. 2010;38:90–6.

    Article  CAS  Google Scholar 

  70. Abdulhussain S, Breitzke H, Ratajczyk T, Grünberg A, Srour M, Arnaut D, Weidler H, Kunz U, Kleebe HJ, Bommerich U. Synthesis, solid–state NMR characterization, and application for hydrogenation reactions of a novel wilkinson’s-type immobilized catalyst. Chem-Eur J. 2014;20(4):1159–66.

    Article  CAS  Google Scholar 

  71. Gutmann T, Alkhagani S, Rothermel N, Limbach H-H, Breitzke H, Buntkowsky G. 31P-solid-state NMR characterization and catalytic hydrogenation tests of novel heterogenized iridium-catalysts. Z Phys Chem. 2017. https://doi.org/10.1515/zpch-2016-0837.

    Article  Google Scholar 

  72. de Boer B, Simon HK, Werts MPL, van der Vegte EW, Hadziioannou G. “Living” free radical photopolymerization initiated from surface-grafted iniferter monolayers. Macromolecules. 2000;33(2):349–56.

    Article  CAS  Google Scholar 

  73. Wu G, Wasylishen RE. Applications of 2-Dimensional P-31 Cp/Mas Nmr techniques for studying metal phosphine complexes in the solid-state. Organometallics. 1992;11(10):3242–8.

    Article  CAS  Google Scholar 

  74. Srour M, Hadjiali S, Sauer G, Brunnengräber K, Breitzke H, Xu Y, Weidler H, Limbach H-H, Gutmann T, Buntkowsky G. Synthesis and solid-state NMR characterization of a robust, pyridyl-based immobilized wilkinson’s type catalyst with high catalytic performance. ChemCatChem. 2016;8(21):3409–16.

    Article  CAS  Google Scholar 

  75. Heaton BT, Iggo JA, Jacob C, Nadarajah J, Fontaine MA, Messere R, Noels AF. Reactions of wilkinson catalyst with pyridine - observation of rhodium complexes containing both pyridine and phosphine ligands. J Chem Soc Dalton Trans. 1994;(19):2875–80.

    Google Scholar 

  76. Davies HML, Beckwith REJ. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem Rev. 2003;103(8):2861–903.

    Article  CAS  Google Scholar 

  77. Doyle MP, Duffy R, Ratnikov M, Zhou L. Catalytic carbene insertion into C-H bonds. Chem Rev. 2010;110(2):704–24.

    Article  CAS  Google Scholar 

  78. Doyle MP, Bagheri V, Wandless TJ, Harn NK, Brinker DA, Eagle CT, Loh KL. Exceptionally high trans (anti) stereoselectivity in catalytic cyclopropanation reactions. J Am Chem Soc. 1990;112(5):1906–12.

    Article  CAS  Google Scholar 

  79. Watanabe N, Ogawa T, Ohtake Y, Ikegami S, Hashimoto S-i. Dirhodium(II) Tetrakis[N-phthaloyl-(S)-tert-leucinate]: a notable catalyst for enantiotopically selective aromatic substitution reactions of α-Diazocarbonyl compounds. Synlett. 1996;1996(01):85–6.

    Article  Google Scholar 

  80. Doyle MP, Hu WH. A new enantioselective synthesis of milnacipran and an analogue by catalytic asymmetric cyclopropanation. Adv Synth Catal. 2001;343:299–302.

    Article  CAS  Google Scholar 

  81. Candeias NR, Afonso CAM, Gois PMP. Making expensive dirhodium(II) catalysts cheaper: Rh(II) recycling methods. Org Biomol Chem. 2012;10(17):3357–78.

    Article  CAS  Google Scholar 

  82. Bergbreiter DE, Morvant M, Chen B. Catalytic cyclopropanation with transition metal salts of soluble polyethylene carboxylates. Tetrahedron Lett. 1991;32(24):2731–4.

    Article  CAS  Google Scholar 

  83. Davies HML, Walji AM. Universal strategy for the immobilization of chiral dirhodium catalysts. Org Lett. 2005;7(14):2941–4.

    Article  CAS  Google Scholar 

  84. Davies HML, Walji AM, Nagashima T. Simple strategy for the immobilization of dirhodium tetraprolinate catalysts using a pyridine-linked solid support. J Am Chem Soc. 2004;126(13):4271–80.

    Article  CAS  Google Scholar 

  85. Lloret J, Estevan F, Bieger K, Villanueva C, Ubeda MA. Immobilized chiral ortho-metalated dirhodium(II) compounds as catalysts in the asymmetric cyclopropanation of styrene with ethyl diazoacetate. Organometallics. 2007;26(17):4145–51.

    Article  CAS  Google Scholar 

  86. Lloret J, Stern M, Estevan F, Sanau M, Ubeda MA. Ortho-metalated dirhodium(II) catalysts immobilized on a polymeric cross-linked support by copolymerization. Study of their catalytic activity in the asymmetric cyclopropanation of styrene with ethyl diazoacetate. Organometallics. 2008;27(5):850–6.

    Article  CAS  Google Scholar 

  87. Oohara T, Nambu H, Anada M, Takeda K, Hashimoto S. A polymer-supported chiral fluorinated dirhodium(II) complex for asymmetric amination of silyl enol ethers. Adv Synth Catal. 2012;354(11–12):2331–8.

    Article  CAS  Google Scholar 

  88. Takeda K, Oohara T, Anada M, Nambu H, Hashimoto S. A polymer-supported chiral dirhodium(II) complex: highly durable and recyclable catalyst for asymmetric intramolecular C-H insertion reactions. Angew Chem Int Ed. 2010;49(39):6979–83.

    Article  CAS  Google Scholar 

  89. Kumar DK, Filatov AS, Napier M, Sun J, Dikarev EV, Petrukhina MA. Dirhodium paddlewheel with functionalized carboxylate bridges: new building block for self-assembly and immobilization on solid support. Inorg Chem. 2012;51(8):4855–61.

    Article  CAS  Google Scholar 

  90. Hultman HM, de Lang M, Nowotny M, Arends I, Hanefeld U, Sheldon RA, Maschmeyer T. Chiral catalysts confined in porous hosts. 1. synthesis. J Catal. 2003;217(2):264–74.

    Article  CAS  Google Scholar 

  91. Dikarev EV, Kumar DK, Filatov AS, Anan A, Xie Y, Asefa T, Petrukhina MA. Recyclable dirhodium catalysts embedded in nanoporous surface-functionalized organosilica hosts for carbenoid-mediated cyclopropanation reactions. ChemCatChem. 2010;2(11):1461–6.

    Article  CAS  Google Scholar 

  92. Gutmann T, Liu J, Rothermel N, Xu Y, Jaumann E, Werner M, Breitzke H, Sigurdsson ST, Buntkowsky G. Natural abundance 15N NMR by dynamic nuclear polarization: fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst. Chem Eur J. 2015;21:3798–805.

    Article  CAS  Google Scholar 

  93. Nickerl G, Stoeck U, Burkhardt U, Senkovska I, Kaskel S. A catalytically active porous coordination polymer based on a dinuclear rhodium paddle-wheel unit. J Mater Chem A. 2014;2(1):144–8.

    Article  CAS  Google Scholar 

  94. Naito S, Tanibe T, Saito E, Miyao T, Mori W. A novel reaction pathway in olefln-deuterium exchange reaction inside the micropores of Rh(II) dicarboxylate polymer complexes. Chem Lett. 2001;(11):1178–9.

    Article  Google Scholar 

  95. Matsunaga S, Hasada K-i, Sugiura K, Kitamura N, Kudo Y, Endo N, Mori W. Hetero bi-paddle-wheel coordination networks: a new synthetic route to Rh-containing metal–organic frameworks. Bull Chem Soc Jpn. 2012;85(4):433–8.

    Article  CAS  Google Scholar 

  96. Liu J, Plog A, Groszewicz P, Zhao L, Xu Y, Breitzke H, Stark A, Hoffmann R, Gutmann T, Zhang K, Buntkowsky G. Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: synthesis and solid-state NMR characterization. Chem-Eur J. 2015;21(35):12414–20.

    Article  CAS  Google Scholar 

  97. Liu J, Fasel C, Braga-Groszewicz P, Rothermel N, Lilly Thankamony AS, Sauer G, Xu Y, Gutmann T, Buntkowsky G. Heterogeneous self-supported dirhodium(ii) catalysts with high catalytic efficiency in cyclopropanation – a structural study. Catal Sci Techol. 2016;6(21):7830–40.

    Article  CAS  Google Scholar 

  98. Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V, Mieville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A, Bodenhausen G, Coperet C, Emsley L. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc. 2010;132(44):15459–61.

    Article  CAS  Google Scholar 

  99. Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc. 2011;133:2104–7.

    Article  CAS  Google Scholar 

  100. Zagdoun A, Casano G, Ouari O, Lapadula G, Rossini AJ, Lelli M, Baffert M, Gajan D, Veyre L, Maas WE, Rosay M, Weber RT, Thieuleux C, Coperet C, Lesage A, Tordo P, Emsley L. A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials. J Am Chem Soc. 2012;134(4):2284–91.

    Article  CAS  Google Scholar 

  101. Kobayashi T, Lafon O, Thankamony ASL, Slowing II, Kandel K, Carnevale D, Vitzthum V, Vezin H, Amoureux J-P, Bodenhausen G, Pruski M. Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys. 2013;15(15):5553–62.

    Article  CAS  Google Scholar 

  102. Blanc F, Sperrin L, Lee D, Dervisoglu R, Yamazaki Y, Haile SM, De Paepe G, Grey CP. Dynamic nuclear polarization NMR of low-gamma nuclei: structural insights into hydrated yttrium-doped BaZrO3. J Phys Chem Lett. 2014;5(14):2431–6.

    Article  CAS  Google Scholar 

  103. Gruening WR, Rossini AJ, Zagdoun A, Gajan D, Lesage A, Emsley L, Coperet C. Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy. Phys Chem Chem Phys. 2013;15(32):13270–4.

    Article  CAS  Google Scholar 

  104. Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C, Boualleg M, Veyre L, Bodenhausen G, Coperet C, Emsley L. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc. 2011;133(7):2104–7.

    Article  CAS  Google Scholar 

  105. Werner M, Heil A, Rothermel N, Breitzke H, Groszewicz PB, Thankamony AS, Gutmann T, Buntkowsky G. Synthesis and solid state NMR characterization of novel peptide/silica hybrid materials. Solid State Nucl Magn. 2015;72:73–8.

    Article  CAS  Google Scholar 

  106. Lafon O, Thankamony ASL, Rosay M, Aussenac F, Lu X, Trebosc J, Bout-Roumazeilles V, Vezine H, Amoureux J-P. Indirect and direct Si-29 dynamic nuclear polarization of dispersed nanoparticles. Chem Commun. 2013;49(28):2864–6.

    Article  CAS  Google Scholar 

  107. Johnson RL, Perras FA, Kobayashi T, Schwartz TJ, Dumesic JA, Shanks BH, Pruski M. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR. Chem Commun. 2016;52(9):1859–62.

    Article  CAS  Google Scholar 

  108. Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. Dynamic nuclear polarization enhanced natural abundance O-17 spectroscopy. J Am Chem Soc. 2013;135(8):2975–8.

    Article  CAS  Google Scholar 

  109. Perras FA, Chaudhary U, Slowing II, Pruski M. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, O-17 DNP-NMR spectroscopy. J Phys Chem C. 2016;120(21):11535–44.

    Article  CAS  Google Scholar 

  110. Blanc F, Chong SY, McDonald TO, Adams DJ, Pawsey S, Caporini MA, Cooper AI. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers. J Am Chem Soc. 2013;135(41):15290–3.

    Article  CAS  Google Scholar 

  111. Zhang YZ, Baker PJ, Casabianca LB. BDPA-doped polystyrene beads as polarization agents for DNP-NMR. J Phys Chem B. 2016;120(1):18–24.

    Article  CAS  Google Scholar 

  112. Le D, Casano G, Phan TNT, Ziarelli F, Ouari O, Aussenac F, Thureau P, Mollica G, Gigmes D, Tordo P, Viel S. Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers. Macromolecules. 2014;47(12):3909–16.

    Article  CAS  Google Scholar 

  113. Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paepe G. Rapid natural-abundance 2D C-13-C-13 correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew Chem Int Ed. 2012;51(47):11766–9.

    Article  CAS  Google Scholar 

  114. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc. 2012;134:16899–908.

    Article  CAS  Google Scholar 

  115. Zhao L, Smolarkiewicz I, Limbach HH, Breitzke H, Pogorzelec-Glaser K, Pankiewicz R, Tritt-Goc J, Gutmann T, Buntkowsky G. Imidazole-doped cellulose as membrane for fuel cells: structural and dynamic insights from solid-state NMR. J Phys Chem C. 2016;120(35):19574–85.

    Article  CAS  Google Scholar 

  116. Zhao L, Li W, Plog A, Xu YP, Buntkowsky G, Gutmann T, Zhang K. Multi-responsive cellulose nanocrystal-rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR. Phys Chem Chem Phys. 2014;16(47):26322–9.

    Article  CAS  Google Scholar 

  117. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci U S A. 2013;110(41):16444–9.

    Article  Google Scholar 

  118. Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S, Ouari O, Tordo P, Rosay M, Maas WE, Copéret C, Farrusseng D, Emsley L, Lesage A. Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. Angew Chem Int Ed. 2012;51(1):123–7.

    Article  CAS  Google Scholar 

  119. Pourpoint F, Thankamony ASL, Volkringer C, Loiseau T, Trebosc J, Aussenac F, Carnevale D, Bodenhausen G, Vezin H, Lafon O, Amoureux JP. Probing Al-27-C-13 proximities in metal-organic frameworks using dynamic nuclear polarization enhanced NMR spectroscopy. Chem Commun. 2013;50(8):933–5.

    Article  Google Scholar 

  120. Kobayashi T, Perras FA, Goh TW, Metz TL, Huang WY, Pruski M. DNP-enhanced ultrawideline solid-state NMR spectroscopy: studies of platinum in metal-organic frameworks. J Phys Chem Lett. 2016;7(13):2322–7.

    Article  CAS  Google Scholar 

  121. Samantaray MK, Alauzun J, Gajan D, Kavitake S, Mehdi A, Veyre L, Lelli M, Lesage A, Emsley L, Coperet C, Thieuleux C. Evidence for metal-surface interactions and their role in stabilizing well-defined immobilized Ru-NHC alkene metathesis catalysts. J Am Chem Soc. 2013;135(8):3193–9.

    Article  CAS  Google Scholar 

  122. Conley MP, Drost RM, Baffert M, Gajan D, Elsevier C, Franks WT, Oschkinat H, Veyre L, Zagdoun A, Rossini A, Lelli M, Lesage A, Casano G, Ouari O, Tordo P, Emsley L, Coperet C, Thieuleux C. A well-defined Pd hybrid material for the Z-selective semihydrogenation of alkynes characterized at the molecular level by DNP SENS. Chem-Eur J. 2013;19(37):12234–8.

    Article  CAS  Google Scholar 

  123. Conley MP, Rossini AJ, Comas-Vives A, Valla M, Casano G, Ouari O, Tordo P, Lesage A, Emsley L, Coperet C. Silica-surface reorganization during organotin grafting evidenced by Sn-119 DNP SENS: a tandem reaction of gem-silanols and strained siloxane bridges. Phys Chem Chem Phys. 2014;16(33):17822–7.

    Article  CAS  Google Scholar 

  124. Eedugurala N, Wang ZR, Chaudhary U, Nelson N, Kandel K, Kobayashi T, Slowing II, Pruski M, Sadow AD. Mesoporous silica-supported amidozirconium-catalyzed carbonyl hydroboration. Acs Catal. 2015;5(12):7399–414.

    Article  CAS  Google Scholar 

  125. Ong TC, Liao WC, Mougel V, Gajan D, Lesage A, Emsley L, Coperet C. Atomistic description of reaction intermediates for supported metathesis catalysts enabled by DNP SENS. Angew Chem Int Ed. 2016;55(15):4743–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Torsten Gutmann or Gerd Buntkowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gutmann, T., Buntkowsky, G. (2018). Solid-State NMR Studies of Supported Transition Metal Catalysts and Nanoparticles. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_39

Download citation

Publish with us

Policies and ethics