Advertisement

Solid-State NMR Characterization of Acidity of Solid Catalysts

  • Anmin Zheng
  • Shenhui Li
  • Feng Deng
Reference work entry

Abstract

Solid acid catalysts such as zeolites, metal oxides, and heteropolyacids are environmentally benign, and are widely applied in advanced chemical and petrochemical processes due to their inherent acid-base catalyzed activity, and advantageous for products separation and reuse. Solid-state NMR (SSNMR) spectroscopy is known to be a powerful technique for exploring the acidic properties of solid acid catalysts. In this section, we aim to provide a comprehensive overview and in-depth discussion on advanced SSNMR techniques for qualitative and quantitative characterization of the acidic properties of solid acid catalysts by utilizing assorted probe molecules. The acid type (Brønsted vs Lewis acid), strength (strong vs weak), concentration (more vs less), distribution/location (intra- vs extra-crystalline), and spatial proximity/interaction of acid sites can be identified by SSNMR experiments. Especially, correlations between the 1H, 13C, and 31P NMR chemical shifts of probe molecules (including deuterated pyridine, 2-13C-acetone, trimethylphosphine, and trialkylphosphine oxide) and the intrinsic Brønsted/Lewis acid strengths of solid acid catalysts have been established, which can be used to quantitatively determine the acid strength. Furthermore, spatial proximity and synergetic effect of various acid sites on solid acid catalysts (such as zeolites) can be ascertained by two-dimensional (2D) double-quantum magic-angle spinning (DQ MAS) NMR spectroscopy. Therefore, SSNMR is a unique approach to provide reliable information on the acidic properties, which should be beneficial for the design and/or modification of solid acid catalysts for practical applications.

Keywords

Solid acid catalysts Acid sites Density functional theory Zeolites Metal oxides Heteropolyacids Solid-state NMR Pyridine Acetone Trimethylphosphine Trimethylphosphine oxide Probe molecules Acidic property 

References

  1. 1.
    Corma A. Zeolites and zeotypes as catalysts. Chem. Rev. 1995;95:559.Google Scholar
  2. 2.
    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997;97:2373.Google Scholar
  3. 3.
    Moscou L, Mone R. Structure and catalytic properties of thermally and hydrothermally treated zeolites: acid strength distribution of REX and REY. J. Catal. 1973;30:417.Google Scholar
  4. 4.
    Knozinger H, Krietenbrink H, Ratnasamy P. 2,6-disubstituted pyridines as probe molecules for surface acid sites—An infrared spectroscopic study. J. Catal. 1977;48:436.Google Scholar
  5. 5.
    Busca G. The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Phys. Chem. Chem. Phys. 1999;1:723.Google Scholar
  6. 6.
    Haw J, Nicholas J, Beck L, Ferguson D. Physical organic chemistry of solid acids: lessons from in situ NMR and theoretical chemistry. Acc. Chem. Res. 1996;29:259.Google Scholar
  7. 7.
    Hunger M, Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Cat. Rev. Sci. Eng. 1997;39:345.Google Scholar
  8. 8.
    Jiang Y, Huang J, Dai W, Hunger. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl. Magn. Reson. 2011;39:116.Google Scholar
  9. 9.
    Haw J. Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys. 2002;4:5431.Google Scholar
  10. 10.
    Zheng AM, Huang SJ, Liu SB, Deng F. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys. 2011;13:14889.Google Scholar
  11. 11.
    Zheng AM, Liu SB, Deng F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nucl. Magn. Reson. 2013;55–56:12.Google Scholar
  12. 12.
    Zheng AM, Li SH, Liu SB, Deng F. Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 2016;49:655.Google Scholar
  13. 13.
    Zheng AM, Deng F, Liu SB. Acidity characterization of solid acid catalysts by solid-state 31P NMR of adsorbed phosphorus-containing probe molecules. Ann. Rep. NMR Spectrosc. 2014;81:47.Google Scholar
  14. 14.
    Huang J, Jiang Y, Marthala VRR, Thomas B, Romanova E, Hunger M. Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J. Phys. Chem. C. 2008;112:3811.Google Scholar
  15. 15.
    Lieder C, Opelt S, Dyballa M, Henning H, Klemm E, Hunger M. Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy. J. Phys. Chem. C. 2010;114:16596.Google Scholar
  16. 16.
    Barich DH, Nicholas JB, Xu T, Haw JF. Theoretical and experimental study of the 13C chemical shift tensors of acetone complexed with Brønsted and Lewis acids. J. Am. Chem. Soc. 1998;120:12342.Google Scholar
  17. 17.
    Fang H, Zheng AM, Chu Y, Deng F. 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study. J. Phys. Chem. C. 2010;114:12711.Google Scholar
  18. 18.
    Lunsford J, Tutunjian P, Chu P, Yeh E, Zalewski D. Solid-state NMR study using trimethylphosphine as a probe of acid sites in normal and dealuminated zeolite Y. J. Phys. Chem. 1989;93:2590.Google Scholar
  19. 19.
    Lunsford JH, Rothwell WP, Shen W. Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J. Am. Chem. Soc. 1985;107:1540.Google Scholar
  20. 20.
    Chu Y, Yu Z, Zheng AM, Fang H, Zhang H, Huang S-J, Liu SB, Deng F. Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C. 2011;115:7660.Google Scholar
  21. 21.
    Rakiewicz E, Peters A, Wormsbecher R, Sutovich K, Mueller K. Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. J. Phys. Chem. B, 1998;102:2890.Google Scholar
  22. 22.
    Osegovic JP, Drago R. Measurement of the global acidity of solid acids by 31P MAS NMR of chemisorbed triethylphosphine oxide. J. Phys. Chem. B, 2000;104:147.Google Scholar
  23. 23.
    Zhao Q, Chen WH, Huang SJ, Wu YC, Lee HK, Liu SB. Discernment and quantification of internal and external acid sites on zeolites. J. Phys. Chem. B, 2002;106:4462.Google Scholar
  24. 24.
    Zheng AM, Zhang H, Lu X, Liu SB, Deng F. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. J. Phys. Chem. B, 2008;112:4496.Google Scholar
  25. 25.
    Zheng AM, Huang SJ, Chen WH, Wu PH, Zhang H, Lee HK, de Menorval LC, Deng F, Liu SB. 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. J. Phys. Chem. A. 2008;112:7349.Google Scholar
  26. 26.
    Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl. Magn. Reson. 1996;6:1.Google Scholar
  27. 27.
    Xu MC, Arnold A, Buchholz A, Wang W, Hunger M. Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum. J. Phys. Chem. B. 2002;106:12140.Google Scholar
  28. 28.
    Chen TH, Wouters BH, Grobet PJ. Enhanced resolution of aluminum and proton sites in the molecular sieve SAPO-37 by 27Al multiple quantum magic angle spinning and 1H spin echo editing NMR. J. Phys. Chem. B. 1999;103:6179.Google Scholar
  29. 29.
    Zheng AM, Zhang H, Chen L, Yue Y, Ye C, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J. Phys. Chem. B. 2007;111:3085.Google Scholar
  30. 30.
    Zheng XB, Blowers P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method. J. Mol. Catal. A: Chem. 2005;229:77.Google Scholar
  31. 31.
    Zhang Q, Wen S, Lei Z. Heterogeneous Baeyer–Villiger oxidation of ketones using hydrogen peroxide as oxidant catalyzed by aminomethyl polystyrene resin-supported tin complex. React. Funct. Polym. 2006;66:1278.Google Scholar
  32. 32.
    Yang J, Janik MJ, Ma D, Zheng AM, Zhang MJ, Neurock M, Davis RJ, Ye CH, Deng F. Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. J. Am. Chem. Soc. 2005;127:18274.Google Scholar
  33. 33.
    Feng N, Zheng AM, Huang S-J, Zhang H, Yu N, Yang C-Y, Liu SB, Deng F. Combined solid-state NMR and theoretical calculation studies of Brønsted acid properties in anhydrous 12-molybdophosphoric acid. J. Phys. Chem. C. 2010;114:15464.Google Scholar
  34. 34.
    Huang S, Yang C, Zheng A, Feng N, Yu N, Wu P, Chang Y, Lin Y, Deng F, Liu SB. New insights into Keggin-type 12-tungstophosphoric acid from 31P MAS NMR analysis of absorbed trimethylphosphine oxide and DFT calculations. Chem. Asian J. 2011;6:137.Google Scholar
  35. 35.
    DeCanio S, Sohn, J, Fritz P, Lunsford J. Acid catalysis by dealuminated zeolite-Y: Methanol dehydration and cumene dealkylation. J. Catal. 1986;101:132.Google Scholar
  36. 36.
    Lónyi F, Lunsford J. The development of strong acidity in hexafluorosilicate-modified Y-type zeolites. J. Catal. 1992;136:566.Google Scholar
  37. 37.
    Brown SP, Spiess HW. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 2001;101:4125.Google Scholar
  38. 38.
    Li SH, Zheng AM, Su YC, Zhang HL, Chen L, Yang J, Ye CH, Deng F. Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 2007;129:11161.Google Scholar
  39. 39.
    Li SH, Huang SJ, Shen WL, Zhang HL, Fang HJ, Zheng AM, Liu SB, Deng F. Probing the spatial proximities among acid sites in dealuminated HY zeolite by solid-state NMR spectroscopy. J. Phys. Chem. C, 2008;112:14486.Google Scholar
  40. 40.
    Yu ZW, Li SH, Wang Q, Zheng AM, Xu J, Chen L, Deng F. Brønsted/lewis acid synergy in H–ZSM-5 and H–MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J. Phys. Chem. C 2011;115:22320.Google Scholar
  41. 41.
    Yu ZW, Wang Q, Chen L, Deng F. Brønsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chin. J. Catal. 2012;33:129.Google Scholar
  42. 42.
    Wang Q, Hu B, Lafon O, Trebosc J, Deng F. Amoureux JP. Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field. J. Magn. Reson. 2009;200:251.Google Scholar
  43. 43.
    Yu ZW, Zheng AM, Wang Q, Chen L, Xu J, Amoureux JP, Deng F. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ MAS NMR spectroscopy at high field. Angew. Chem.Int. Ed. 2010;49:8657.Google Scholar
  44. 44.
    Peng LM, Chupas PJ, Grey CP. Measuring Brønsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. J. Am. Chem. Soc. 2004;126:12254.Google Scholar
  45. 45.
    Peng LM, Grey, CP. Diphosphine probe molecules and solid-state NMR investigations of proximity between acidic sites in zeolite HY. Microporous Mesoporous Mat. 2008;116:277.Google Scholar
  46. 46.
    Muggli DS, Ding LF. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. App. Catal. B. 2001;32:181.Google Scholar
  47. 47.
    Zhang H, Yu H, Zheng AM, Li S, Shen W, Deng F. Reactivity enhancement of 2-propanol photocatalysis on SO42−/TiO2: Insights from solid-state NMR spectroscopy. Environ. Sci. Technol. 2008;42:5316.Google Scholar
  48. 48.
    Hu YC, Guo B, Fu YY, Ren YH, Tang GF, Chen XY, Yue B, He HY. Facet-dependent acidic and catalytic properties of sulfated titania solid superacids. Chem. Commun. 2015;51:14219.Google Scholar
  49. 49.
    Seo Y, Cho K, Jung Y, Ryoo R. Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catal. 2013;3:713.Google Scholar
  50. 50.
    Zhao Q, Chen WH, Huang S, Liu SB. Qualitative and quantitative determination of acid sites on solid acid catalysts. Stud. Surf. Sci. Catal. 2003;145:205.Google Scholar
  51. 51.
    Obenaus U, Dyballa M, Lang S, Scheibe M, Hunger M. Generation and properties of Brønsted acid sites in bifunctional Rh-, Ir-, Pd-, and Pt-containing zeolites Y investigated by solid-state NMR spectroscopy. J. Phys. Chem. C, 2015;119:15254.Google Scholar
  52. 52.
    Karra MD, Sutovich KJ, Mueller KT. NMR characterization of Brønsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide. J. Am. Chem. Soc. 2002;124:902.Google Scholar
  53. 53.
    Wiper P, Amelse J, Mafra L. Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the H-[B]-ZSM-5 borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. J Catal. 2014;316:240.Google Scholar
  54. 54.
    Hayashi S, Jimura K, Kojima N. Acid property of MFI-type zeolites probed by trimethylphosphine oxide studied by solid-state NMR. Micropor. Mesopor. Mat. 2014;186:101.Google Scholar
  55. 55.
    Kao H, Yu C, Yeh M. Detection of the inhomogeneity of Brønsted acidity in H-mordenite and H-β zeolites: a comparative NMR study using trimethylphosphine and trimethylphosphine oxide as 31P NMR probes. Micropor. Mesopor. Mat. 2002;53:1.Google Scholar
  56. 56.
    Huang S, Zhao Q, Chen W, Han X, Bao X, Lo P, Lee H, Liu SB. Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy. Catal. Today, 2004;97:25.Google Scholar
  57. 57.
    Kao H, Chang P, Liao Y, Lee L, Chien C. Solid-state NMR characterization of the acid sites in cubic mesoporous Al-MCM-48 materials using trimethylphosphine oxide as a 31P NMR probe. Micropor. Mesopor. Mat. 2008;114:352.Google Scholar
  58. 58.
    Zhao Q, Chen W, Huang S, Wu Y, Lee H, Liu SB. Acidity characterization of MCM-41 materials using solid-state NMR. Stud. Surf. Sci. Catal. 2002;141:453.Google Scholar
  59. 59.
    Chen W, Zhao Q, Lin H, Yang Y, Mou C, Liu SB. Hydrocracking in Al-MCM-41: diffusion effect. Micropor. Mesopor. Mat. 2003;66:209.Google Scholar
  60. 60.
    Hu W, Luo Q, Su Y, Chen L, Yue Y, Ye C, Deng F. Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Micropor. Mesopor. Mat. 2006;92:22.Google Scholar
  61. 61.
    Wang L, Zhang J, Yi X, Zheng AM, Deng F, Chen C, Ji Y, Liu F, Meng X, Xiao FS. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 2015;5:2727.Google Scholar
  62. 62.
    Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R, Chmelka BF, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011;333:328.Google Scholar
  63. 63.
    Jung J, Jo C, Mota F, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Appl. Catal. A: General, 2015;492:68.Google Scholar
  64. 64.
    Kim J, Kim W, Seo Y, Kim JC, Ryoo R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: effects of zeolite crystal thickness and platinum location. J. Catal. 2013;301:187Google Scholar
  65. 65.
    Luo H, Michaelis V, Hodges S, Griffin R, Román-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem. Sci. 2015;6:6320.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations