NMR Characterization of the Dynamic Conformations of Oligosaccharides

Reference work entry

Abstract

NMR spectroscopy is a potentially powerful method to delineate dynamic conformational ensembles of oligosaccharides in solution. The carbohydrate-oriented NMR approach has become more promising owing to recent methodological advances in the stages of sample preparation, spectral measurement, and data interpretation. The state-of-the-art methodology is best exemplified by conformational analyses of a series of high-mannose-type oligosaccharides, which carry fate determinants of glycoproteins recognized by a panel of intracellular lectins. Genetically engineered yeast strains are employed for the production of homogeneous oligosaccharides with isotope labeling. Paramagnetic effects including lanthanide-induced pseudo-contact shifts provide long-distance geometrical information for oligosaccharides complementing the local conformational information provided by the nuclear Overhauser effect and scalar coupling. NMR data thus collected are useful for validating conformational ensembles derived from molecular dynamics simulation, enabling the exploration of conformational spaces of oligosaccharides in solution. NMR spectroscopy combined with molecular dynamics simulation provides complementary views to crystal structures regarding lectin–oligosaccharide interactions, which are characterized by conformational adaptability of the oligosaccharides involving conformational selection and induced-fit processes. NMR spectroscopy integrated with synthetic chemistry, molecular and cellular biology, and computational simulation along with other biophysical methods will lead to the next generation of advances in glycobiology and glycotechnology.

Keywords

Oligosaccharide Carbohydrate Glycan Glycoprotein Lectin Molecular chaperone X-ray crystallography Yeast Isotope labeling Paramagnetic effect Paramagnetic relaxation enhancement Pseudo-contact shift Lanthanide Magnetic susceptibility tensor Deuterium-induced isotope shift Molecular dynamics simulation Conformational selection Induced-fit 

References

  1. 1.
    Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solis D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci. 2011;36(6):298–313.CrossRefGoogle Scholar
  2. 2.
    Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395–410.CrossRefGoogle Scholar
  3. 3.
    Kawasaki N, Itoh S, Yamaguchi T. LC/MSn for glycoprotein analysis: N-linked glycosylation analysis and peptide sequencing of glycopeptides. Methods Mol Biol. 2009;534:239–48.Google Scholar
  4. 4.
    Hirabayashi J, Kuno A, Tateno H. Development and applications of the lectin microarray. Top Curr Chem. 2015;367:105–24.CrossRefGoogle Scholar
  5. 5.
    Rillahan CD, Paulson JC. Glycan microarrays for decoding the glycome. Annu Rev Biochem. 2011;80:797–823.CrossRefGoogle Scholar
  6. 6.
    Kamiya Y, Satoh T, Kato K. Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol. 2014;26:44–53.CrossRefGoogle Scholar
  7. 7.
    Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta. 2012;1820(9):1327–37.CrossRefGoogle Scholar
  8. 8.
    Unverzagt C, Kajihara Y. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev. 2013;42(10):4408–20.CrossRefGoogle Scholar
  9. 9.
    Olsson U, Serianni AS, Stenutz R. Conformational analysis of β-glycosidic linkages in 13C-labeled glucobiosides using inter-residue scalar coupling constants. J Phys Chem B. 2008;112(14):4447–53.CrossRefGoogle Scholar
  10. 10.
    Zhang W, Zhao H, Carmichael I, Serianni AS. An NMR investigation of putative interresidue H-bonding in methyl α-cellobioside in solution. Carbohydr Res. 2009;344(12):1582–7.CrossRefGoogle Scholar
  11. 11.
    Jonsson KHM, Pendrill R, Widmalm G. NMR analysis of conformationally dependent nJC,H and nJC,C in the trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L-Rhap-OMe and a site-specifically labeled isotopologue thereof. Magn Reson Chem. 2011;49(3):117–24.CrossRefGoogle Scholar
  12. 12.
    Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K. Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J Biomol NMR. 2011;50(4):397–401.CrossRefGoogle Scholar
  13. 13.
    Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K. Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides. Biomolecules. 2013;3(1):108–23.CrossRefGoogle Scholar
  14. 14.
    Zhu T, Yamaguchi T, Satoh T, Kato K. A hybrid strategy for the preparation of 13C-labeled high-mannose-type oligosaccharides with terminal glucosylation for NMR study. Chem Lett. 2015;44(12):1744–6.CrossRefGoogle Scholar
  15. 15.
    Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, et al. Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. Chem Bio Chem. 2017;18(4):396–401.CrossRefGoogle Scholar
  16. 16.
    Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng. 2016;113(5):961–9.CrossRefGoogle Scholar
  17. 17.
    Chiba Y, Akeboshi H. Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull. 2009;32(5):786–95.CrossRefGoogle Scholar
  18. 18.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3.CrossRefGoogle Scholar
  19. 19.
    Yamaguchi Y, Kato K. Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol. 2010;478:305–22.CrossRefGoogle Scholar
  20. 20.
    Kato K, Yamaguchi Y, Arata Y. Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog Nucl Magn Reson Spectrosc. 2010;56(4):346–59.CrossRefGoogle Scholar
  21. 21.
    Yagi H, Zhang Y, Yagi-Utsumi M, Yamaguchi T, Iida S, Yamaguchi Y, et al. Backbone 1H, 13C, and 15N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol NMR Assign. 2015;9(2):257–60.CrossRefGoogle Scholar
  22. 22.
    Saxena K, Dutta A, Klein-Seetharaman J, Schwalbe H. Isotope labeling in insect cells. Methods Mol Biol. 2012;831:37–54.CrossRefGoogle Scholar
  23. 23.
    Yagi H, Nakamura M, Yokoyama J, Zhang Y, Yamaguchi T, Kondo S, et al. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. J Biomol NMR. 2015;62(2):157–67.CrossRefGoogle Scholar
  24. 24.
    Yagi H, Fukuzawa N, Tasaka Y, Matsuo K, Zhang Y, Yamaguchi T, et al. NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep. 2015;34(6):959–68.CrossRefGoogle Scholar
  25. 25.
    Vliegenthart JF. High resolution 1H-NMR spectroscopy of carbohydrate structures. Adv Exp Med Biol. 1980;125:77–91.CrossRefGoogle Scholar
  26. 26.
    Prestegard JH, Koerner TAW, Demou PC, Yu RK. Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc. 1982;104(18):4993–5.CrossRefGoogle Scholar
  27. 27.
    Bubb WA. NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn Reson Part A. 2003;19A(1):1–19.CrossRefGoogle Scholar
  28. 28.
    Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, et al. 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta Gen Subj. 2008;1780(3):619–25.CrossRefGoogle Scholar
  29. 29.
    Wu J, Serianni AS. Isotope-edited 1D and 2D n.m.r. spectroscopy of 13C-substituted carbohydrates. Carbohydr Res. 1992;226(2):209–18.CrossRefGoogle Scholar
  30. 30.
    Gonzalez L, Bruix M, Diaz-Maurino T, Feizi T, Rico M, Solis D, et al. Conformational studies of the Man8 oligosaccharide on native ribonuclease B and on the reduced and denatured protein. Arch Biochem Biophys. 2000;383(1):17–27.CrossRefGoogle Scholar
  31. 31.
    Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science. 1995;269(5228):1273–8.CrossRefGoogle Scholar
  32. 32.
    Kato K, Yamaguchi T. Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj J. 2015;32(7):505–13.CrossRefGoogle Scholar
  33. 33.
    Yamaguchi T, Kamiya Y, Yeun-Mun C, Yamamoto S, Kato K. Terminal spin labeling of a high-mannose-type oligosaccharide for quantitative NMR analysis of its dynamic conformation. Chem Lett. 2013;42(5):544–6.CrossRefGoogle Scholar
  34. 34.
    Yamamoto S, Yamaguchi T, Erdélyi M, Griesinger C, Kato K. Paramagnetic lanthanide tagging for NMR conformational analyses of N-linked oligosaccharides. Chem Eur J. 2011;17(34):9280–2.CrossRefGoogle Scholar
  35. 35.
    Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K. Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew Chem Int Ed. 2014;53(41):10941–4.CrossRefGoogle Scholar
  36. 36.
    Marchetti R, Perez S, Arda A, Imberty A, Jimenez-Barbero J, Silipo A, et al. “Rules of engagement” of protein-glycoconjugate interactions: a molecular view achievable by using NMR spectroscopy and molecular modeling. ChemistryOpen. 2016;5(4):274–96.CrossRefGoogle Scholar
  37. 37.
    Liu S, Meng L, Moremen KW, Prestegard JH. Nuclear magnetic resonance structural characterization of substrates bound to the α-2,6-sialyltransferase, ST6Gal-I. Biochemistry. 2009;48(47):11211–9.CrossRefGoogle Scholar
  38. 38.
    Hanashima S, Yamaguchi Y. Indirect detection of hydroxy proton exchange through deuterium-induced 13C-NMR isotope shifts. In: Taniguchi N, Endo T, Hart GW, Seeberger PH, Wong C-H, editors. Glycoscience: biology and medicine. Tokyo: Springer Japan; 2015. p. 129–35.CrossRefGoogle Scholar
  39. 39.
    Battistel MD, Azurmendi HF, Freedberg DI. Glycan OH exchange rate determination in aqueous solution: seeking evidence for transient hydrogen bonds. J Phys Chem B. 2017.  https://doi.org/10.1021/acs.jpcb.6b10594.CrossRefGoogle Scholar
  40. 40.
    Hanashima S, Kato K, Yamaguchi Y. 13C-NMR quantification of proton exchange at LewisX hydroxyl groups in water. Chem Commun. 2011;47(38):10800–2.CrossRefGoogle Scholar
  41. 41.
    Hanashima S, Ikeda A, Tanaka H, Adachi Y, Ohno N, Takahashi T, et al. NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1. Glycoconj J. 2014;31(3):199–207.CrossRefGoogle Scholar
  42. 42.
    Fadda E, Woods RJ. Molecular simulations of carbohydrates and protein–carbohydrate interactions: motivation, issues and prospects. Drug Discov Today. 2010;15(15–16):596–609.CrossRefGoogle Scholar
  43. 43.
    Re S, Nishima W, Miyashita N, Sugita Y. Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev. 2012;4(3):179–87.CrossRefGoogle Scholar
  44. 44.
    Yamamoto S, Zhang Y, Yamaguchi T, Kameda T, Kato K. Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem Commun. 2012;48(39):4752–4.CrossRefGoogle Scholar
  45. 45.
    Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, et al. Structural basis of carbohydrate recognition by calreticulin. J Biol Chem. 2010;285(49):38612–20.CrossRefGoogle Scholar
  46. 46.
    Satoh T, Cowieson NP, Hakamata W, Ideo H, Fukushima K, Kurihara M, et al. Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. J Biol Chem. 2007;282(38):28246–55.CrossRefGoogle Scholar
  47. 47.
    Satoh T, Yamaguchi T, Kato K. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Molecules. 2015;20(2):2475–91.CrossRefGoogle Scholar
  48. 48.
    Sato S, Yoshimasa Y, Fujita D, Yagi-Utsumi M, Yamaguchi T, Kato K, et al. A self-assembled spherical complex displaying a gangliosidic glycan cluster capable of interacting with amyloidogenic proteins. Angew Chem Int Ed. 2015;54(29):8435–9.CrossRefGoogle Scholar
  49. 49.
    Vliegenthart JFG, Dorland L, van Halbeek H. High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. In: Tipson RS, Derek H, editors. Advances in carbohydrate chemistry and biochemistry, vol. 41. New York: Academic; 1983. p. 209–374.Google Scholar
  50. 50.
    Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, Kato K. Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate-carbohydrate interactions. Chem Asian J. 2017.  https://doi.org/10.1002/asia.201700202R1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Koichi Kato
    • 1
    • 2
  • Hirokazu Yagi
    • 2
  • Takumi Yamaguchi
    • 2
    • 3
  1. 1.Institute for Molecular Science and Okazaki Institute for Integrative BiosciencesNational Institutes of Natural SciencesOkazakiJapan
  2. 2.Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho-ku, NagoyaJapan
  3. 3.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations