Advertisement

Solid-State NMR Studies of Small Molecule Adsorption in Metal-Organic Frameworks (MOFs)

Reference work entry

Abstract

Metal-organic frameworks (MOFs) represent a modern class of porous materials with high flexibility and tunability of properties. Solid-state NMR (SSNMR) investigations can provide numerous pieces of information toward their structural characterization. The subject of this article is to present the results that have been obtained from inclusion of small molecules into the pores with regard to their dynamics inside the pores and their interaction with the host framework. Molecules like water and carbon dioxide are typical candidates for adsorption. Also 129Xe NMR is performed to get information on pore sizes. Incorporation of other molecules like nitric oxide and metallic particles is discussed as well.

Keywords

129Xe NMR 2H NMR Adsorption Adsorption sites Carbon dioxide Guest molecules Metal-organic frameworks MOFs Molecular dynamics Polyoxometalates POMs Nitric oxide Sealed glass ampules Solid-state NMR SSNMR Water adsorption 

References

  1. 1.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keefe M, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002;295:469–72.CrossRefGoogle Scholar
  2. 2.
    Kitagawa S, Kitaura R, Noro SI. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43:2334–75.CrossRefGoogle Scholar
  3. 3.
    Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Complete issue dealing with MOFs. Chem Rev. 2012;112:673–4.CrossRefGoogle Scholar
  4. 4.
    Sutrisno A, Huang Y. Solid-state NMR: A powerful tool for characterization of metal‐organic frameworks. Solid State Nucl Magn Reson. 2013;49–50:1–11.CrossRefGoogle Scholar
  5. 5.
    Hoffmann HC, Debowski M, Müller P, Paasch S, Senkovska I, Kaskel S, et al. Solid-state NMR spectroscopy of metal–organic framework compounds (MOFs). Materials. 2012;5:2537–72.CrossRefGoogle Scholar
  6. 6.
    Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)22(H2O)3]n. Science. 1999;283:1148–50.CrossRefGoogle Scholar
  7. 7.
    Barthelet K, Marrot J, Riou D, Férey G. A breathing hybrid organic – inorganic solid with very large pores and high magnetic characteristics. Angew Chem Int Ed Engl. 2002;41:281–4.CrossRefGoogle Scholar
  8. 8.
    Ito T, Fraissard J. Xenon-129 NMR study of xenon adsorbed on Y zeolites. J Chem Phys. 1982;76:5225–9.CrossRefGoogle Scholar
  9. 9.
    Böhlmann W, Pöppl A, Sabo M, Kaskel S. Characterization of the metal-organic framework compound Cu3(benzene 1,3,5-tricarboxylate)2 by means of 129Xe nuclear magnetic and electron paramagnetic resonance spectroscopy. J Phys Chem B. 2006;110:20177–81.CrossRefGoogle Scholar
  10. 10.
    Raftery D, Long H, Meersmann T, Grandinetti PJ, Reven L, Pines A. High-field NMR of adsorbed xenon polarized by laser pumping. Phys Rev Lett. 1991;66:584–7.CrossRefGoogle Scholar
  11. 11.
    Hoffmann HC, Assfour B, Epperlein F, Klein N, Paasch S, Senkovska I, et al. High-Pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). J Am Chem Soc. 2011;133:8681–90.CrossRefGoogle Scholar
  12. 12.
    Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem A Eur J. 2004;10:1373–82.CrossRefGoogle Scholar
  13. 13.
    Springuel-Huet MA, Nossov A, Adem Z, Guenneau F, Volkringer C, Loiseau T, et al. 129Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al). J Am Chem Soc. 2010;132:11599–607.CrossRefGoogle Scholar
  14. 14.
    Klein N, Herzog C, Sabo M, Senkovska I, Getinzschmann J, Paasch S, et al. Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metalorganic framework Ni2(2,6-ndc)2(dabco). Phys Chem Chem Phys. 2010;12:11778–84.CrossRefGoogle Scholar
  15. 15.
    Gul-E-Noor F, Michel D, Krautscheid H, Haase J, Bertmer M. Time dependent water uptake in Cu3(btc)2 MOF: Identification of different water adsorption states by 1H MAS NMR. Microporous Mesoporous Mater. 2013;180:8–13.CrossRefGoogle Scholar
  16. 16.
    Lieder C, Opelt S, Dyballa M, Henning H, Klemm E, Hunger M. Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy. J Phys Chem C. 2010;114:16598–602.CrossRefGoogle Scholar
  17. 17.
    Gul-E-Noor F, Jee B, Pöppl A, Hartmann M, Himsl D, Bertmer M. Effects of varying water adsorption on a Cu3(BTC)2 metalorganic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys Chem Chem Phys. 2011;13:7783–8.CrossRefGoogle Scholar
  18. 18.
    Xu J, Terskikh VV, Huang Y. 25Mg solid-state NMR: A sensitive probe of adsorbing guest molecules on a metal center in metal-organic framework CPO-27-Mg. J Phys Chem Lett. 2013;4:7–11.CrossRefGoogle Scholar
  19. 19.
    Wittmann T, Siegel R, Reimer N, Milius W, Stock N, Senker J. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification. Chem A Eur J. 2015;21:314–23.CrossRefGoogle Scholar
  20. 20.
    Kong X, Scott E, Ding W, Mason JA, Long JR, Reimer JA. CO2 dynamics in a metal-organic framework with open metal sites. J Am Chem Soc. 2012;134:14341–4.CrossRefGoogle Scholar
  21. 21.
    Gul-E-Noor F, Mendt M, Michel D, Pöppl A, Krautscheid H, Haase J, et al. Adsorption of small molecules on Cu3(btc)2 and Cu3−xZnx(btc)2 metal-organic frameworks (MOF) as studied by solid-state NMR. J Phys Chem C. 2013;117:7703–12.CrossRefGoogle Scholar
  22. 22.
    Chena S, Lucier BEG, Boyle PD, Huang Y. Understanding the fascinating origins of CO2 adsorption and dynamics in MOFs. Chem Mater. 2016;28:5829–46.CrossRefGoogle Scholar
  23. 23.
    Gassensmith JJ, Furukawa H, Smaldone RA, Forgan RS, Botros YY, Yaghi OM, et al. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J Am Chem Soc. 2011;133:15312–5.CrossRefGoogle Scholar
  24. 24.
    Kolokolov DI, Jobic H, Stepanow AG, Ollivier J, Rives S, Maurin G, et al. Experimental and simulation evidence of a corkscrew motion for benzene in the metal-organic framework MIL-47. J Phys Chem C. 2012;116:15093–8.CrossRefGoogle Scholar
  25. 25.
    Shustova NB, Ong TC, Cozzolino AF, Michaelis VK, Griffin RG, Dinca M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J Am Chem Soc. 2012;134:15061–70.CrossRefGoogle Scholar
  26. 26.
    Xu J, Sinelnikov R, Huang Y. Capturing guest dynamics in metal-organic framework CPO-27-M (M = Mg, Zn) by 2H solid-state NMR spectroscopy. Langmuir. 2016;32:5468–79.CrossRefGoogle Scholar
  27. 27.
    Maksimchuk NV, Kovalenko KA, Arzumanov SS, Chesalov YA, Melguno MS, Stepanov AG, et al. Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg Chem. 2010;49:2920–30.CrossRefGoogle Scholar
  28. 28.
    Zang Y, Shi J, Zhao X, Kong L, Zhang F, Zhong Y. Highly stable chromium(III) terephthalate metal organic framework (MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a watertolerant solid catalyst for hydrolysis and esterification. React Kinet Mech Catal. 2013;109:77–89.CrossRefGoogle Scholar
  29. 29.
    Granadeiro CM, Barbosa ADS, Ribeiro S, Santos ICMS, de Castro B, Cunha-Silva L, et al. Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Cat Sci Technol. 2014;4:1416–25.CrossRefGoogle Scholar
  30. 30.
    Salomon W, Yazigi FJ, Roch-Marchal C, Mialane P, Horcajada P, Serre C, et al. Immobilization of co-containing polyoxometalates in MIL-101(Cr): Structural integrity versus chemical transformation. Dalton Trans. 2014;43:12698–705.CrossRefGoogle Scholar
  31. 31.
    Meilikhov M, Yusenko K, Fischer RA. Incorporation of metallocenes into the channel structured metal–organic frameworks MIL-53(Al) and MIL-47(V). Dalton Trans. 2010;39:10990–9.CrossRefGoogle Scholar
  32. 32.
    Peksa M, Burraekaew S, Schmid R, Lang J, Stallmach F. Rotational and translational dynamics of CO2 adsorbed in MOF Zn2(bdc)2(dabco). Microporous Mesoporous Mater. 2015;216:75–81.CrossRefGoogle Scholar
  33. 33.
    Lucier BEG, Zhang Y, Lee KJ, Lu Y, Huang Y. Grasping hydrogen adsorption and dynamics in metal–organic frameworks using 2H solid-state NMR. Chem Commun. 2016;52:7541–4.CrossRefGoogle Scholar
  34. 34.
    Lucier BEG, Chan H, Zhang Y, Huang Y. Multiple modes of motion: Realizing the dynamics of CO adsorbed in M-MOF-74 (M = Mg, Zn) by using solid-state NMR spectroscopy. Eur J Inorg Chem. 2016;2017–24.CrossRefGoogle Scholar
  35. 35.
    Khan AH, Peikert K, Fröba M, Bertmer M. NO adsorption in amino-modified Cu3(btc)2-type MOFs studied by solid-state NMR. Microp Mesop Mater. 2015;216:111–7.CrossRefGoogle Scholar
  36. 36.
    Haldar R, Inukai M, Horike S, Uemura K, Kitagawa S, Maji TK. 113Cd nuclear magnetic resonance as a probe of structural dynamics in a flexible porous framework showing selective O2/N2 and CO2/N2 adsorption. Inorg Chem. 2016;55:4166–72.CrossRefGoogle Scholar
  37. 37.
    Jiang Y, Huang J, Ksumaj B, Jeschke G, Hunger M, Mallat T, et al. Adsorption-desorption induced structural changes of Cu-MOF evidenced by solid state NMR and EPR spectroscopy. J Am Chem Soc. 2009;131:2058–9.CrossRefGoogle Scholar
  38. 38.
    Jiang Y, Huang J, Marx S, Kleist W, Hunger M, Baiker A. Effect of Dehydration on the local structure of framework aluminum atoms in mixed linker MIL-53(Al) materials studied by solid-state NMR spectroscopy. J Phys Chem Lett. 2010;1:2886–90.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Experimental Physics IILeipzig UniversityLeipzigGermany

Personalised recommendations