Advertisement

Application of EPR in Studies of Archaeological Samples

  • Laurent Le Pape
Reference work entry

Abstract

Electron paramagnetic resonance (EPR), also known as electron spin resonance (ESR), is more and more used in archaeology, and types of materials analyzed or purposes expand each year. Among its applications, dating is one of the most important. Many materials containing quartz or carbonates could be dated, from sediments to tephras including heated lithic artifacts and potteries, but also teeth, speleothems, shells, corals, and even mortars or plasters. The thermal history is also an important information which can be obtained by EPR to understand ancient ways of using fire for cooking or for lithic or ceramic industry. A third application is the determination of the soil or water source, which could help to understand whence original matter used for lithic or ceramic industry came or to describe climatic environment of settlements. Archaeological artifacts can also be studied, leading to the knowledge of ancient pigments and techniques used in glasses, oil paintings, or inks. Ideas of aging status or processes can be obtained for organic materials such as paper, wood, or leather. Finally, other alternative EPR experiments, such as other frequencies than X-band, EPR microscopy, and pulsed EPR, will be described. In several archaeological research domains, EPR has been, only recently, frequently used, and a lot of effort is spent to increase reliability of the results, especially in EPR dating of the earliest or oldest samples, but also in thermal history, and tendencies to try to normalize procedures for better accuracies and easier comparisons are observed.

Keywords

EPR ESR Dating Archaeology Quartz Carbonate Fossil Ceramics Tooth Pigment Aging Leather Wood Paper Torrefaction 

Abbreviations

CW

Continuous wave

Dac

Accumulated dose

Dan

Annual dose rate

Deq

Equivalent dose

Di

Irradiation dose of aliquot i

DSE

Double saturation exponentials

EMPA

Electron microprobe analysis

EPR

Electron paramagnetic resonance

ESR

Electron spin resonance

EXP

Exponential

FTIR

Fourier transform infrared spectroscopy

I

EPR signal intensity

LIN

Linear

LU

Linear U-uptake

NMR

Nuclear magnetic resonance

OHC

Oxygen hole center

OSL

Optically stimulated luminescence

SSE

Single saturation exponential

Theat

Heating temperature

Ti-2

Subtraction of two EXP as a fitting function of the high dose-response curve of Ti-Li

TL

Thermoluminescence

U

Uranium

References

  1. 1.
    Ikeya M. New applications of electron spin resonance: dating, dosimetry, microscopy. Singapore: World Scientific; 1993.CrossRefGoogle Scholar
  2. 2.
    Rink WJ. Electron spin resonance (ESR) dating and ESR applications in quaternary science and archaeometry. Radiat Meas. 1997;27:975–1025.CrossRefGoogle Scholar
  3. 3.
    Weil JA, Bolton JR. Electron paramagnetic resonance: elementary theory and applications. 2nd ed. New York: Wiley-interscience; 1994.Google Scholar
  4. 4.
    Ikeya M. Dating a stalactite by electron paramagnetic resonance. Nature. 1975;255:48–50.CrossRefGoogle Scholar
  5. 5.
    Jonas M. Concepts and methods of ESR dating. Radiat Meas. 1997;27:943–73.CrossRefGoogle Scholar
  6. 6.
    Skinner AR. Current topics in ESR dating. Radiat Meas. 2011;46:749–53.CrossRefGoogle Scholar
  7. 7.
    Duval M. Comments on “ESR dating of the Majuangou and Banshan Paleolithic sites in the Nihewan Basin, North China” by Liu et al. (2014). J Hum Evol. 2016;90:198–202.CrossRefGoogle Scholar
  8. 8.
    Toyoda S. Paramagnetic lattice defects in quartz for applications to ESR dating. Quat Geochronol. 2015;30:498–505.CrossRefGoogle Scholar
  9. 9.
    Voinchet P, Toyoda S, Falguères C, Hernandez M, Tissoux H, Moreno D, Bahain J-J. Evaluation of ESR residual dose in quartz modern samples, an investigation on environmental dependence. Quat Geochronol. 2015;30:506–12.CrossRefGoogle Scholar
  10. 10.
    Duval M, Sancho C, Calle M, Guilarte V, Peña-Monné JL. On the interest of using the multiple center approach in ESR dating of optically bleached quartz grains: some examples from the Early Pleistocene terraces of the Alcanadre River (Ebro basin, Spain). Quat Geochronol. 2015;29:58–69.CrossRefGoogle Scholar
  11. 11.
    Tani A, Bartoll J, Ikeya M, Komura K, Kajiwara H, Fujimura S, Kamada T, Yokoyama Y. ESR study of thermal history and dating of a stone tool. Appl Magn Reson. 1997;13:561–9.CrossRefGoogle Scholar
  12. 12.
    Tsukamoto S, Toyoda S, Tani A, Oppermann F. Single aliquot regenerative dose method for ESR dating using X-ray irradiation and preheat. Radiat Meas. 2015;81:9–15.CrossRefGoogle Scholar
  13. 13.
    Cano NF, Ribeiro RB, Munita CS, Watanabe S, Neves EG, Tamanaha EK. Dating and determination of firing temperature of ancient potteries from São Paulo II archaeological site, Brazil by TL and EPR techniques. J Cult Herit. 2015;16:361–4.CrossRefGoogle Scholar
  14. 14.
    Fattibene P, Callens F. EPR dosimetry with tooth enamel: a review. Appl Radiat Isot. 2010;68:2033–116.CrossRefGoogle Scholar
  15. 15.
    Shao Q, Chadam J, Grün R, Falguères C, Dolo J-M, Bahain J-J. The mathematical basis for the US-ESR dating method. Quat Geochronol. 2015;30:1–8.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Rey M, Herrando-Pérez S, Gillespie R, Jacobs Z, Saltré F, Brook BW, Prideaux GJ, Roberts RG, Cooper A, Alroy J, Miller GH, Bird MI, Johnson CN, Beeton N, Turney CSM, Bradshaw CJA. Criteria for assessing the quality of middle Pleistocene to Holocene vertebrate fossil ages. Quat Geochronol. 2015;30:69–79.CrossRefGoogle Scholar
  17. 17.
    Duval M, Grün R. Are published ESR dose assessments on fossil tooth enamel reliable? Quat Geochronol. 2016;31:19–27.CrossRefGoogle Scholar
  18. 18.
    Nosenko VV, Vorona IP, Baran NP, Ishchenko SS, Vysotskyi BV, Krakhmalnaya TV, Semenov YA. Comparative EPR study CO2 radicals in modern and fossil tooth enamel. Radiat Meas. 2015;78:53–7.CrossRefGoogle Scholar
  19. 19.
    Brumm A, van den Bergh GD, Storey M, Kurniawan I, Alloway BV, Setiawan R, Setiyabudi E, Grün R, Moore MW, Yurnaldi D, Puspaningrum MR, Wibowo UP, Insani H, Sutisna I, Westgate JA, Pearce NJG, Duval M, Meijer HJM, Aziz F, Sutikna T, van der Kaars S, Flude S, Morwood MJ. Age and context of the oldest known hominin fossils from Flores. Nature. 2016;534:249–53.CrossRefGoogle Scholar
  20. 20.
    Pirouelle F, Bahain JJ, Falguères C, Dolo JM. Study of the effect of a thermal treatment on the DE determination in ESR dating of speleothems. Quat Geochronol. 2007;2:386–91.CrossRefGoogle Scholar
  21. 21.
    Aydaş C, Engin B, Kapan S, Komut T, Aydın T, Paksu U. Dose estimation, kinetics and dating of fossil marine mollusc shells from northwestern part of Turkey. Appl Radiat Isot. 2015;105:72–9.CrossRefGoogle Scholar
  22. 22.
    Schellmann G, Radtke U. Progress in ESR dating of Pleistocene corals – a new approach for DE determination. Quat Sci Rev. 2001;20:1015–20.CrossRefGoogle Scholar
  23. 23.
    Kabacińska Z, Krzyminiewski R, Michalska D, Dobosz B. Investigation of lime mortars and plasters from archaeological excavations in Hippos (Israel) using electron paramagnetic resonance. Geochronometria. 2014;41:112–20.CrossRefGoogle Scholar
  24. 24.
    Bartoll J, Tani A. Thermal history of archaeological objects, studied by electron spin resonance. Naturwissenschaften. 1998;85:474–81.CrossRefGoogle Scholar
  25. 25.
    Bartoll J, Tani A, Ikeya M, Inada T. ESR investigations of burnt soil. Appl Magn Reson. 1996;11:577–86.CrossRefGoogle Scholar
  26. 26.
    Bensimon Y, Deroide B, Clavel S, Zanchetta J-V. Electron spin resonance and dilatometric studies of ancient ceramics applied to the determination of firing temperature. Jpn J Appl Phys. 1998;37(Part 1):4367–72.CrossRefGoogle Scholar
  27. 27.
    Mangueira GM, Toledo R, Teixeira S, Franco RWA. A study of the firing temperature of archeological pottery by X-ray diffraction and electron paramagnetic resonance. J Phys Chem Solids. 2011;72:90–6.CrossRefGoogle Scholar
  28. 28.
    Robins GV, Seeley NJ, McNeil DAC, Symons MRC. Identification of ancient heat treatment in flint artefacts by ESR spectroscopy. Nature. 1978;276:703–4.CrossRefGoogle Scholar
  29. 29.
    Asfora VK, Guzzo PL, Pessis A-M, Barros VSM, Watanabe S, Khoury HJ. Characterization of the burning conditions of archaeological pebbles using the thermal sensitization of the 110°C TL peak of quartz. Radiat Meas. 2014;71:485–9.CrossRefGoogle Scholar
  30. 30.
    Aydaş C, Engin B, Dönmez EO, Belli O. The use of ESR technique for assessment of heating temperatures of archaeological lentil samples. Spectrochim Acta Part A. 2010;75:466–73.CrossRefGoogle Scholar
  31. 31.
    Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L, Bonnefois L, Bardet M. NMR analysis of the transformation of wood constituents by torrefaction. Fuel. 2012;92:271–80.CrossRefGoogle Scholar
  32. 32.
    Triantafyllou M, Papachristodoulou P, Pournou A. Wet charred wood: a preliminary study of the material and its conservation treatments. J Archaeol Sci. 2010;37:2277–83.CrossRefGoogle Scholar
  33. 33.
    Schurr MR, Hayes RG. Stable carbon- and nitrogen-isotope ratios and electron spin resonance (ESR) g-values of charred bones: changes with heating and a critical evaluation of the utility of g-values for reconstructing thermal history and original isotope ratios. J Archaeol Sci. 2008;35:2017–31.CrossRefGoogle Scholar
  34. 34.
    Perrette Y, Poulenard J, Protière M, Fanget B, Lombard C, Miège C, Quiers M, Nafferchoux E, Pépin-Donat B. Determining soil sources by organic matter EPR fingerprints in two modern speleothems. Org Geochem. 2015;88:59–68.CrossRefGoogle Scholar
  35. 35.
    Pépin-Donat B, Poulenard J, Blondel T, Lombard C, Protière M, Dudal Y, Perrette Y, Fanget B, Miège C, Delannoy J-J, Dorioz J-M, Emblanch C, Arnaud F, Guiguet-Covex C. La spectroscopie de Résonance Paramagnétique Électronique: applications. Grenoble: Presse Universitaire de Grenoble; 2014. p. 27–45.Google Scholar
  36. 36.
    Zoleo A, Brustolon M, Barbon A, Silvestri A, Molin G, Tonietto S. Fe(III) and Mn(II) EPR quantitation in glass fragments from the palaeo-Christian mosaic of St. Prosdocimus (Padova, NE Italy): archaeometric and colour correlations. J Cult Herit. 2015;16:322–8.CrossRefGoogle Scholar
  37. 37.
    Zoleo A, Nodari L, Rampazzo M, Piccinelli F, Russo U, Federici C, Brustolon M. Characterization of pigment and binder in badly conserved illuminations of a 15th-century manuscript. Archaeometry. 2014;56:496–512.CrossRefGoogle Scholar
  38. 38.
    Monico L, Janssens K, Cotte M, Sorace L, Vanmeert F, Brunetti BG, Miliani C. Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchem J. 2016;124:272–82.CrossRefGoogle Scholar
  39. 39.
    Canevali C, Gentile P, Orlandi M, Modugno F, Lucejko JJ, Colombini MP, Brambilla L, Goidanich S, Riedo C, Chiantore O, Baraldi P, Baraldi C, Gamberini MC. A multi-analytical approach for the characterization of powders from the Pompeii archaeological site. Anal Bioanal Chem. 2011;401:1801–14.CrossRefGoogle Scholar
  40. 40.
    Bronzato M, Zoleo A, Biondi B, Centeno SA. An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta Part A. 2016;153:522–9.CrossRefGoogle Scholar
  41. 41.
    Bronzato M, Calvini P, Federici C, Dupont A-L, Meneghetti M, Di Marco V, Biondi B, Zoleo A. Degradation by-products of ancient paper leaves from wash waters. Anal Methods. 2015;7:8197–205.CrossRefGoogle Scholar
  42. 42.
    Bronzato M, Calvini P, Federici C, Bogialli S, Favaro G, Meneghetti M, Mba M, Brustolon M, Zoleo A. Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study. Chem Eur J. 2013;19:9569–77.CrossRefGoogle Scholar
  43. 43.
    Tran K, Boumlil N, Albino C, Caillat L, Pécaut J, Bardet M, Gerbaud G, Le Pape L, Kirschner A. Characterization and conservation of a gun carriage excavated from the 17th century Stirling Castle shipwreck. In: Grimstad K, editor. ICOM-CC 16th triennal conference. Lisbon: International Council of Museums; 2011. p. 1–9.Google Scholar
  44. 44.
    Bardet M, Gerbaud G, Giffard M, Doan C, Hediger S, Le Pape L. 13C high-resolution solid-state NMR for structural elucidation of archaeological woods. Prog Nucl Magn Reson Spectrosc. 2009;55:199–214.CrossRefGoogle Scholar
  45. 45.
    Bardet M, Gerbaud G, Le Pape L, Hediger S, Trân Q-K, Boumlil N. Nuclear magnetic resonance and electron paramagnetic resonance as analytical tools to investigate structural features of archaeological leathers. Anal Chem. 2009;81:1505–11.CrossRefGoogle Scholar
  46. 46.
    Ciglanská M, Jančovičová V, Havlínová B, Machatová Z, Brezová V. The influence of pollutants on accelerated ageing of parchment with iron gall inks. J Cult Herit. 2014;15:373–81.CrossRefGoogle Scholar
  47. 47.
    Oka T, Grün R, Tani A, Yamanaka C, Ikeya M, Huang HP. ESR microscopy of fossil teeth. Radiat Meas. 1997;27:331–7.CrossRefGoogle Scholar
  48. 48.
    Bortolussi C, Zoleo A, Maritan L, Collauto A, Brustolon M, Marrale M, Parlato A, Usai D. Electron paramagnetic resonance and petrographic analysis for dating Mesolithic and Neolithic pottery from Al Khiday (Sudan). Radiat Meas. 2016;89:89–98.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Grenoble AlpesGrenobleFrance
  2. 2.CEA, BIG, Laboratoire de Chimie et Biologie des MétauxGrenobleFrance
  3. 3.CNRSGrenobleFrance

Personalised recommendations