High-Resolution Solid-State NMR of Cultural Inorganic Materials

  • Donatella CapitaniEmail author
  • Piero Ciccioli
  • Valeria Di Tullio
  • Noemi Proietti
Reference work entry


NMR can be successfully applied in the study of cultural inorganic materials. In this chapter case studies illustrating the potential of solid-state NMR in this field are reported. The first case deals with the use of 207Pb solid-state NMR to investigate inorganic pigments and related degradation processes. The second and third cases are focused on the use of 29Si and 27Al solid-state NMR to obtain information on ancient pottery and historic dimension stones. The deconvolution of static 207Pb NMR spectra of lead-based pigments allows to obtain information on the coordination geometry of the lead atom and its reaction pathways occurring during degradation processes. Solid-state NMR applied on ancient pottery allows to study and compare different ancient production technologies. 29Si MAS, 27Al MAS, and 3Q-MAS can be applied, along with other techniques, to characterize very complex materials such as volcanic tuffs, study their degradation processes, and find solutions for their conservation and restoration.


Solid state NMR 27Al MAS NMR 29Si MAS NMR 207Pb static NMR MQ-MAS, Inorganic pigments pottery volcanic tuffs zeolites glasses welded tuff lithified tuff chabazite phillipsite 


  1. 1.
    MacGregor AW, O’Dell LA, Schurko W. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. J Magn Reson. 2011;208:103–13.CrossRefGoogle Scholar
  2. 2.
    Hung I, Gan Z. On the practical aspects of recording wideline QCPMG NMR spectra. J Magn Reson. 2010;204:256–65.CrossRefGoogle Scholar
  3. 3.
    Yamauchi K, Jenssen JWG, Kentgens APM. Implementing solenoid microcoils for wide-line solid-state NMR. J Magn Reson. 2004;167:87–96.CrossRefGoogle Scholar
  4. 4.
    Tang JA, O’Dell LA, Aguair PM, Lucier BEG, Sakellariou D, Shurko RW. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem Phys Lett. 2008;466:227–34.CrossRefGoogle Scholar
  5. 5.
    Capitani D, Di Tullio V, Proietti N. Nuclear magnetic resonance to characterize and monitor Cultural Heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.CrossRefGoogle Scholar
  6. 6.
    Presciutti F, Capitani D, Sgamellotti A, Brunetti BG, Costantino F, Viel V, Segre AL. EPR, SEM-EDS, XRPD, NMR characterization of iron rich fired clays. J Phy Chem B. 2005;109:22147–58.CrossRefGoogle Scholar
  7. 7.
    Di Tullio V, Capitani D, Trojsi G, Vicini S, Proietti N. Nuclear Magnetic Resonance to investigate inorganic porous materials of interest in the cultural heritage field. Eur J Mineral. 2015;27:297–310.CrossRefGoogle Scholar
  8. 8.
    Ciccioli P, Plescia P, Capitani D.1H, 29Si, and 27Al MAS NMR as a tool to characterize volcanic tuffs and assess their suitability for industrial applications. J Phys Chem C. 2010;114:9328–43.Google Scholar
  9. 9.
    Cervantes G, Mendoza-Díaz DE, Alvarez-Gasca A, Martinez-Richa A. Application of 29Si and 27Al magic angle spinning nuclear magnetic resonance to studies of the building materials of historical monuments. Solid State Nucl Mag. 1999;13:263–9.Google Scholar
  10. 10.
    Catalano J, Murphy A, Yao Y, Yap GPA, Zumbulyadis N, Centeno SA, Dybowski C. Coordination geometry of lead carboxylates – spectroscopic and crystallographic evidence. Dalton Trans. 2015;44:2340–7.CrossRefGoogle Scholar
  11. 11.
    Catalano J, Murphy A, Yao Y, Alkan F, Zumbulyadis N, Centeno SA, Dybowski C. 207Pb and 119Sn solid-state NMR and relativistic DFT studies of the historic pigment lead-tin yellow type. J Chem Phys. 2014;118:7952–8.Google Scholar
  12. 12.
    O’Dell LA, Schurko RW. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem Phys Lett. 2008;464:97–102.CrossRefGoogle Scholar
  13. 13.
    Catalano J, Yao Y, Zumbulyadis N, Centeno SA, Dybowski C. Nuclear Magnetic Resonance spectra and Pb-207 chemical-shift tensors of lead carboxylates relevant to soap formation in oil paintings. Appl Spectr. 2014;68(3):280–6.CrossRefGoogle Scholar
  14. 14.
    Herzfeld AE, Berger J. Sideband intensities in NMR spectra of samples spinning at the magic angle. J Chem Phys. 1980;73:6021–30.CrossRefGoogle Scholar
  15. 15.
    Eichele K, Wasylishen RE. The dipolar splitting ratio method – a convenient approach to the analysis of dipolar-chemical shift NMR spectra of static powder samples. J Magn Reson A. 1994;106:46–56.CrossRefGoogle Scholar
  16. 16.
    Eichele K. WSOLIDS. Tubingen: University of Tubingen; 2013.Google Scholar
  17. 17.
    Medek A, Harwood JS, Frydman L. Multiple-quantum magic-angle spinning NMR: a new method for the study of Quadrupolar nuclei in solids. J Am Chem Soc. 1995;117:12779–87.CrossRefGoogle Scholar
  18. 18.
    Fernandez C, Amoureux JP. 2D multiquantum MAS.NMR spectroscopy of 27Al in aluminophosphate molecular sieve. Chem Phys Lett. 1995;242:449–54.CrossRefGoogle Scholar
  19. 19.
    Massiot D, Fayon F, Capron M, King I, LeCalvè S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem. 2002;40:70–6.CrossRefGoogle Scholar
  20. 20.
    Neuville DR, Cormier L, Massiot D. Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation. Geochim Cosmochim Acta. 2004;68:5071–9.CrossRefGoogle Scholar
  21. 21.
    MacKenzie KJD, Smith ME. In: Cahn RW, editor. Multinuclear solid-state NMR of inorganic materials, Materials series, vol. 6. Oxford/New York: Pergamon; 2002. p. 201–60.CrossRefGoogle Scholar
  22. 22.
    Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. New York: Wiley; 1987. p. 158–318.Google Scholar
  23. 23.
    Cappelletti P, Langella A, Colella A, De’Gennaro R. Mineralogical and technical features of zeolite deposits from northern Latium volcanic district. Per Mineral. 1999;68:127–44.Google Scholar
  24. 24.
    Perugini D, Poli G. The monte Cimino Volcano. Per Mineral. 2003;72:203–10.Google Scholar
  25. 25.
    Jackson MD, Marra F, Hay RL, Cawood C, Winkler EM. The judicious selection and preservation of tuff and travertine buildings stone in ancient Rome. Archaeometry. 2005;47:485–510.CrossRefGoogle Scholar
  26. 26.
    Lombardi G, Meucci C. Il Tufo Giallo della Via Tiberina (Roma) utilizzato nei monumenti romani. Rend Fis Acc Lincei. 2006;6:263–87.CrossRefGoogle Scholar
  27. 27.
    Passaglia E, Vezzalini G, Carnevali R. Diagenetic chabazites and phillipsites in Italy: crystal chemistry and genesis. Eur J Mineral. 1990;2:827–39.CrossRefGoogle Scholar
  28. 28.
    De’ Gennaro M, Adabbo M, Langella A. Hypothesis on the genesis of zeolites in some european volcaniclastic deposits. In: Ming DW, Mumpton FA, editors. Natural zeolite’93 occurrence, properties, use. Brockport: International Committee on Natural Zeolites; 1995. p. 51–67.Google Scholar
  29. 29.
    Hay RL, Sheppard RA. Occurrence of zeolites in sedimentary rocks: an overview. In: Bish DL, Ming DW, editors. Natural zeolites: occurrence, properties, application, Reviews in mineralogy & geochemistry, vol. 45. 2001. p. 217–34.Google Scholar
  30. 30.
    Neuhoff PS, Ruhl LS. Mechanisms and geochemical significance of Si–Al substitution in zeolite solid solutions. Chem Geol. 2006;225:373–87.CrossRefGoogle Scholar
  31. 31.
    Ciccioli P, Cattuto C, Plescia P, Valentini V, Riccardo N. Geochemical and engineering geological properties of the volcanic tuffs used in the Etruscan tombs of Norchia (Northern Latium, Italy) and factors responsible of their fast surface and structural decay. Archaeometry. 2010;52:229–51.CrossRefGoogle Scholar
  32. 32.
    Chiocchini U, Lanconelli S, Madonna S. Geological features, and the historical and artistic heritage of Viterbo, city of Popes, Emperors and thermomineral water. In: Proceedings of the 32nd International Geological Congress, Florence, Vol. 3, Paper D06; 2004. 20 pages.Google Scholar
  33. 33.
    Jackson MD, Kosso C, Marra F, Hay R. Geological Basis of Vitruvius’ Empirical Observations of Material Characteristics of Rock Utilized in Roman Masonry. In: Proceedings of the Second International Congress of Construction History. Queens’ College, University of Cambridge, 29 March–2 April 2006, edited by M. Dunkeld, J. Campbell, H. Louw, M. Tutton, B. Addis, and R. Thorne, 1685–702. London: The Construction History Society.Google Scholar
  34. 34.
    De Rita D, Bertagnini A, Faccenna C, Landi P, Rosa C, Zarlenga F. Considerazioni sull’evoluzione geologico petrografica dell’area tolfetana e cerite. Studi Geologici Camerti, 1992. Special volume 1991/2 CROP 11, 369–370.Google Scholar
  35. 35.
    Mattias PP, Ventriglia U. La regione vulcanica dei Monti Sabatini e Cimini, Memorie della Società geologica italiana, vol. 9. Pisa: Arti Grafiche Pacini Mariotti; 1970. p. 331–84.Google Scholar
  36. 36.
    Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol. 1986;27:745–50.CrossRefGoogle Scholar
  37. 37.
    Maekawa H, Maekawa T, Kawamura K, Yokohama T. The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J Non Cryst Solids. 1991;127:53–64.CrossRefGoogle Scholar
  38. 38.
    Malfait WJ, Halter WE, Morizet Y, Meier BH, Verel R. Structural control on bulk melt properties: single and double quantum 29Si NMR spectroscopy on alkali-silicate glasses. Geochim Cosmochim Acta. 2007;71:6002–18.CrossRefGoogle Scholar
  39. 39.
    Ede M. NMR studies of oxide-based glasses. Annu Rep Prog Chem Sect C:Phys Chem. 2012;108:177–221.CrossRefGoogle Scholar
  40. 40.
    Zhou L, Guo J, Yang N, Li L. Solid-state nuclear magnetic resonance and infrared spectroscopy of alkali feldspars. Sci China. 1997;40:159–66.CrossRefGoogle Scholar
  41. 41.
    Jaret SL, Woerner WR, Phillips BL, Ehm L, Nekvasil H, Wright SP, Glotch TD. Maskelynite formation via solid-state transformation: evidence of infrared and X-ray anisotropy. J Geophys Res Planets. 2015;120:570–87.CrossRefGoogle Scholar
  42. 42.
    Stebbins JF. Dynamics and structure of silicate and oxide melts: nuclear magnetic resonance study. In: Stebbins JF, McMillan PF, Dingwell DB, editors. Structure, dynamics and properties of silicate melts, Reviews in mineralogy, vol. 32. Washington, DC: Mineralogical Society of America; 1995. p. 192–246.Google Scholar
  43. 43.
    Le Losq C, Mysen OB, Cody GD. Water and magmas: insight about water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid state NMR spectroscopy. Progr Earth Planet Sci. 2015;2:22.CrossRefGoogle Scholar
  44. 44.
    Begaudeau K, Morizet Y, Florian P, Paris M, Mercier JC. Solid-state NMR analysis of Fe-bearing minerals: implications and applications for Earth sciences. Eur J Mineral. 2012;24:535–50.CrossRefGoogle Scholar
  45. 45.
    Topal T, Doyuran V. Engineering geological properties and durability assessment of the Cappadocian tuff. Eng Geol. 1997;47:175–87.CrossRefGoogle Scholar
  46. 46.
    Colella G. Natural zeolites and the environment. In: Cejka J, van Bekkum H, Corma A, Schuth F, editors. Introduction to zeolite science and practice. Amsterdam: Elsevier; 2007. p. 999–1036.CrossRefGoogle Scholar
  47. 47.
    Neuhoff PS, Stebbins JF, Bird DK. Si-Al disorder in solid solution in Analcime Chabazite and Wairakite. Am Mineral. 2003;88:410–23.CrossRefGoogle Scholar
  48. 48.
    Freda C, Gaeta M, Palladino D, Trigila R. The Villa Senni Eruption (Alban Hills, Central Italy): the role of H2O and CO2 on magma chamber evolution and on eruptive scenario. J Volcanol Geotherm Res. 1997;78:103–20.CrossRefGoogle Scholar
  49. 49.
    Kato M, Nishido H. Simulation of 29Si MAS NMR spectra and modeling of aluminum ordering in the zeolites with PHI type framework. Microporous Mesoporous Mater. 2003;61:261–71.CrossRefGoogle Scholar
  50. 50.
    Takaishi T, Kato M. Determination of the ordered distribution of aluminum atoms in zeolitic frameworks. Part I. Zeolites. 1995;15:689–700.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Donatella Capitani
    • 1
    Email author
  • Piero Ciccioli
    • 1
  • Valeria Di Tullio
    • 1
  • Noemi Proietti
    • 1
  1. 1.Laboratorio di Risonanza Magnetica “Annalaura Segre”, Istituto di Metodologie ChimicheCNR Area della Ricerca di Roma 1Monterotondo (RM)Italy

Personalised recommendations