Liquid-State NMR in Cultural Heritage and Archaeological Sciences

Reference work entry

Abstract

Applications of liquid-state, high-resolution multinuclear 1D and 2D NMR spectroscopy in the fields of cultural heritage materials and archaeological organic residue analysis are described in this contribution. The research work summarized describes NMR methodologies for the characterization and chemical composition analysis of organic materials that are constituents of diverse cultural heritage specimens of interest, including museum objects and artworks, paintings, contemporary works of art constructed from modern polymeric materials, wood, resins, paint binders, waxes, and organic residues of archaeological interest in general. The analysis of the organic degradation products identified in cultural heritage objects and organic residues using NMR spectroscopy is also highlighted. Degradation and aging induces hydrolytic and oxidative chemical transformations in cultural heritage materials and organic residues. The analytical NMR characterization of degradation processes is important in understanding the state of preservation of cultural heritage objects and specimens, since it may be used to guide the selection of proper conservation and restoration treatments.

Keywords

NMR spectroscopy Binders Organic residues Resin Wax Polymers Food Varnish Art Archaeology Lipids Painting Archaeometry Aging Degradation Hydrolysis Oxidation Conservation Restoration 

References

  1. 1.
    Ghisalberti EL, Godfrey IM. Application of nuclear magnetic resonance spectroscopy to the analysis of organic archaeological materials. Stud Conserv. 1998;43(4):215–30.Google Scholar
  2. 2.
    Lambert JB, Shawl CE, Stearns JA. Nuclear magnetic resonance in archaeology. Chem Soc Rev. 2000;29(3):175–82.CrossRefGoogle Scholar
  3. 3.
    Capitani D, Di Tullio V, Proietti N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.CrossRefGoogle Scholar
  4. 4.
    Spyros A, Anglos D. Studies of organic paint binders by NMR spectroscopy. Appl Phys A Mater Sci Process. 2006;83(4):705–8.CrossRefGoogle Scholar
  5. 5.
    Spyros A, Anglos D. Study of aging in oil paintings by 1D and 2D NMR spectroscopy. Anal Chem. 2004;76(17):4929–36.CrossRefGoogle Scholar
  6. 6.
    Cipriani G, Salvini A, Dei L, Macherelli A, Cecchi FS, Giannelli C. Recent advances in swollen-state NMR spectroscopy for the study of drying oils. J Cult Herit. 2009;10(3):388–95.CrossRefGoogle Scholar
  7. 7.
    Sfakianaki S, Kouloumpi E, Anglos D, Spyros A. Egg yolk identification and aging in mixed paint binding media by NMR spectroscopy. Magn Reson Chem. 2015;53(1):22–6.CrossRefGoogle Scholar
  8. 8.
    Georgetapopescu P, Enache-Preoteasa U, Badea FD. Applications of spectral analysis methods in the restoration and preservation of some easel paintings from romanian museum collections. Rev Chim. 2012;63(4):367–74.Google Scholar
  9. 9.
    Saladino ML, Ridolfi S, Carocci I, Chirco G, Caramanna S, Caponetti E. A multi-disciplinary investigation of the “Tavolette fuori posto” of the “Hall of Barons” wooden ceiling of the “Steri” (Palermo, Italy). Microchem J. 2016;126:132–7.CrossRefGoogle Scholar
  10. 10.
    Di Tullio V, Capitani D, Atrei A, Benetti F, Perra G, Presciutti F, et al. Advanced NMR methodologies and micro-analytical techniques to investigate the stratigraphy and materials of 14th century Sienese wooden paintings. Microchem J. 2016;125:208–18.CrossRefGoogle Scholar
  11. 11.
    Maier MS, De Faria DLA, Boschín MT, Parera SD. Characterization of reference lipids and their degradation products by Raman spectroscopy, nuclear magnetic resonance and gas chromatography–mass spectrometry. Arkivoc. 2005;2005(12):311–8.Google Scholar
  12. 12.
    Ghisalberti EL, Godfrey IM. The application of nuclear magnetic resonance spectroscopy to the analysis of pitches and resins from marine archaeological sites. Bul Aust Inst Marit Archaeol. 1990;14:1–8.Google Scholar
  13. 13.
    Moniz GA, Hammond GB. Identification of ambergris from the New Bedford Whaling Museum by nuclear magnetic resonance spectroscopy. J AOAC Int. 1996;79(2):423–5.Google Scholar
  14. 14.
    Lambert JB, Tsai CYH, Shah MC, Hurtley AE, Santiago-Blay JA. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry. 2012;54(2):332–48.CrossRefGoogle Scholar
  15. 15.
    Lambert JB, Santiago-Blay JA, Ramos RR, Wu Y, Levy AJ. Nuclear magnetic resonance (NMR) examination of fossilized, semi-fossilized, and modern resins from the Caribbean Basin and surrounding regions. Life Excit Biol. 2015;2(4):180–209.CrossRefGoogle Scholar
  16. 16.
    Lambert JB, Heckenbach EA, Wu Y, Santiago-Blay JA. Characterization of plant exudates by principal-component and cluster analyses with nuclear magnetic resonance variables. J Nat Prod. 2010;73(10):1643–8.CrossRefGoogle Scholar
  17. 17.
    Lambert JB, Kozminski MA, Fahlstrom CA, Santiago-Blay JA. Proton nuclear magnetic resonance characterization of resins from the family Pinaceae. J Nat Prod. 2007;70(2):188–95.CrossRefGoogle Scholar
  18. 18.
    Bruni S, Guglielmi V. Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:613–22.CrossRefGoogle Scholar
  19. 19.
    Jung L, Métais MC, Bachoffner P. Physico-chemical analysis of an ointment dating from the 13th-14th century. Ann Pharm Fr. 1972;30(3):205–10.Google Scholar
  20. 20.
    Zoia L, Tolppa EL, Pirovano L, Salanti A, Orlandi M. 1H-NMR AND 31P-NMR characterization of the lipid fraction in archaeological ointments. Archaeometry. 2012;54(6):1076–99.CrossRefGoogle Scholar
  21. 21.
    Barreca S, Bruno M, Oddo L, Orecchio S. Preliminary study on analysis and removal of wax from a Carrara marble statue. Natural Product Research. 2015;  https://doi.org/10.1080/14786419.2015.1113411.
  22. 22.
    Gutierrez Blanco C, González Azpiroz MD, Fernández VA. Relationship between the working aquality of asturian jets (Spain) and their structure using parameters defend by 1H-NMR. Archaeometry. 2008;50(5):877–86.CrossRefGoogle Scholar
  23. 23.
    Crestini C, El Hadidi NMN, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin. Microchem J. 2009;92(2):150–4.CrossRefGoogle Scholar
  24. 24.
    Salanti A, Zoia L, Tolppa EL, Giachi G, Orlandi M. Characterization of waterlogged wood by NMR and GPC techniques. Microchem J. 2010;95(2):345–52.CrossRefGoogle Scholar
  25. 25.
    Zoia L, Salanti A, Orlandi M. Chemical characterization of archaeological wood: Softwood Vasa and hardwood Riksapplet case studies. J Cult Herit. 2015;16(4):428–37.CrossRefGoogle Scholar
  26. 26.
    Bronzato M, Calvini P, Federici C, Bogialli S, Favaro G, Meneghetti M, et al. Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study. Chem Eur J. 2013;19(29):9569–77.CrossRefGoogle Scholar
  27. 27.
    Spyros A. Quantitative determination of the distribution of free hydroxylic and carboxylic groups in unsaturated polyester and alkyd resins by 31P-NMR spectroscopy. J Appl Polym Sci. 2002;83(8):1635–42.CrossRefGoogle Scholar
  28. 28.
    Spyros A. Characterization of unsaturated polyester and alkyd resins using one- and two-dimensional NMR spectroscopy. J Appl Polym Sci. 2003;88(7):1881–8.CrossRefGoogle Scholar
  29. 29.
    Bartolozzi G, Marchiafava V, Mirabello V, Peruzzini M, Picollo M. Chemical curing in alkyd paints: an evaluation via FT-IR and NMR spectroscopies. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:520–5.CrossRefGoogle Scholar
  30. 30.
    Stamatakis G, Knuutinen U, Laitinen K, Spyros A. Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy. Anal Bioanal Chem. 2010;398(7–8):3203–14.CrossRefGoogle Scholar
  31. 31.
    Robinson N, Evershed RP, James Higgs W, Jerman K, Eglinton G. Proof of a pine wood origin for pitch from tudor (Mary Rose) and Etruscan shipwrecks: application of analytical organic chemistry in archaeology. Analyst. 1987;112(5):637–44.CrossRefGoogle Scholar
  32. 32.
    Al-Sammerrai F, Al-Sammerrai D, Al-Rawi J. The use of thermogravimetry and NMR spectroscopy in the attempted identification of the source of babylonian building asphalt. Thermochim Acta. 1987;115(C):181–8.CrossRefGoogle Scholar
  33. 33.
    Sauter F, Hayek EWH, Moche W, Jordis U. Identification of betulin in archaeological tar. Z Naturforsch C J Biosci. 1987;42(11–12):1151–2.Google Scholar
  34. 34.
    Sauter F, Graf A, Hametner C, Fröhlich J. Studies in organic archaeometry III: prehistoric adhesives: alternatives to birch bark pitch could be ruled out. Arkivoc. 2001;2001(5):21–4.CrossRefGoogle Scholar
  35. 35.
    Sauter F, Graf A, Hametner C, Fröhlich J, Neugebauer JW, Preinfalk F. Studies in organic archaeometry IV: analysis of an organic agglutinant used to fix iron-age clay figurines to their base. Arkivoc. 2002;2002(1):35–9.CrossRefGoogle Scholar
  36. 36.
    Lauer F, Pätzold S, Gerlach R, Protze J, Willbold S, Amelung W. Phosphorus status in archaeological arable topsoil relicts-is it possible to reconstruct conditions for prehistoric agriculture in Germany? Geoderma. 2013;207–208(1):111–20.CrossRefGoogle Scholar
  37. 37.
    Zolotareva BN, Demkin VA. Humus in paleosols of archaeological monuments in the dry steppes of the Volga-Don interfluve. Eurasian Soil Sci. 2013;46(3):262–72.CrossRefGoogle Scholar
  38. 38.
    Ascough PL, Bird MI, Francis SM, Lebl T. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. J Archaeol Sci. 2011;38(1):69–78.CrossRefGoogle Scholar
  39. 39.
    Beck CW, Fellows CA, Mackennan E. Nuclear magnetic resonance spectrometry in archaeology. In: Archaeological Chemistry, ACS Advances in Chemistry Series. no. 138. Washington D.C. 1974. p. 226–35.Google Scholar
  40. 40.
    Zlateva B, Rangelov M. Chemical analysis of organic residues found in hellenistic time amphorae from SE Bulgaria. J Appl Spectrosc. 2015;82(2):221–7.CrossRefGoogle Scholar
  41. 41.
    Walther A, Ravasio D, Qin F, Wendland J, Meier S. Development of brewing science in (and since) the late 19th century: molecular profiles of 110–130 year old beers. Food Chem. 2015;183:227–34.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NMR Laboratory, Chemistry DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations