Skip to main content

Liquid-State NMR in Cultural Heritage and Archaeological Sciences

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Applications of liquid-state, high-resolution multinuclear 1D and 2D NMR spectroscopy in the fields of cultural heritage materials and archaeological organic residue analysis are described in this contribution. The research work summarized describes NMR methodologies for the characterization and chemical composition analysis of organic materials that are constituents of diverse cultural heritage specimens of interest, including museum objects and artworks, paintings, contemporary works of art constructed from modern polymeric materials, wood, resins, paint binders, waxes, and organic residues of archaeological interest in general. The analysis of the organic degradation products identified in cultural heritage objects and organic residues using NMR spectroscopy is also highlighted. Degradation and aging induces hydrolytic and oxidative chemical transformations in cultural heritage materials and organic residues. The analytical NMR characterization of degradation processes is important in understanding the state of preservation of cultural heritage objects and specimens, since it may be used to guide the selection of proper conservation and restoration treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghisalberti EL, Godfrey IM. Application of nuclear magnetic resonance spectroscopy to the analysis of organic archaeological materials. Stud Conserv. 1998;43(4):215–30.

    CAS  Google Scholar 

  2. Lambert JB, Shawl CE, Stearns JA. Nuclear magnetic resonance in archaeology. Chem Soc Rev. 2000;29(3):175–82.

    Article  CAS  Google Scholar 

  3. Capitani D, Di Tullio V, Proietti N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.

    Article  CAS  Google Scholar 

  4. Spyros A, Anglos D. Studies of organic paint binders by NMR spectroscopy. Appl Phys A Mater Sci Process. 2006;83(4):705–8.

    Article  CAS  Google Scholar 

  5. Spyros A, Anglos D. Study of aging in oil paintings by 1D and 2D NMR spectroscopy. Anal Chem. 2004;76(17):4929–36.

    Article  CAS  Google Scholar 

  6. Cipriani G, Salvini A, Dei L, Macherelli A, Cecchi FS, Giannelli C. Recent advances in swollen-state NMR spectroscopy for the study of drying oils. J Cult Herit. 2009;10(3):388–95.

    Article  Google Scholar 

  7. Sfakianaki S, Kouloumpi E, Anglos D, Spyros A. Egg yolk identification and aging in mixed paint binding media by NMR spectroscopy. Magn Reson Chem. 2015;53(1):22–6.

    Article  CAS  Google Scholar 

  8. Georgetapopescu P, Enache-Preoteasa U, Badea FD. Applications of spectral analysis methods in the restoration and preservation of some easel paintings from romanian museum collections. Rev Chim. 2012;63(4):367–74.

    Google Scholar 

  9. Saladino ML, Ridolfi S, Carocci I, Chirco G, Caramanna S, Caponetti E. A multi-disciplinary investigation of the “Tavolette fuori posto” of the “Hall of Barons” wooden ceiling of the “Steri” (Palermo, Italy). Microchem J. 2016;126:132–7.

    Article  CAS  Google Scholar 

  10. Di Tullio V, Capitani D, Atrei A, Benetti F, Perra G, Presciutti F, et al. Advanced NMR methodologies and micro-analytical techniques to investigate the stratigraphy and materials of 14th century Sienese wooden paintings. Microchem J. 2016;125:208–18.

    Article  CAS  Google Scholar 

  11. Maier MS, De Faria DLA, Boschín MT, Parera SD. Characterization of reference lipids and their degradation products by Raman spectroscopy, nuclear magnetic resonance and gas chromatography–mass spectrometry. Arkivoc. 2005;2005(12):311–8.

    Google Scholar 

  12. Ghisalberti EL, Godfrey IM. The application of nuclear magnetic resonance spectroscopy to the analysis of pitches and resins from marine archaeological sites. Bul Aust Inst Marit Archaeol. 1990;14:1–8.

    Google Scholar 

  13. Moniz GA, Hammond GB. Identification of ambergris from the New Bedford Whaling Museum by nuclear magnetic resonance spectroscopy. J AOAC Int. 1996;79(2):423–5.

    CAS  Google Scholar 

  14. Lambert JB, Tsai CYH, Shah MC, Hurtley AE, Santiago-Blay JA. Distinguishing amber and copal classes by proton magnetic resonance spectroscopy. Archaeometry. 2012;54(2):332–48.

    Article  CAS  Google Scholar 

  15. Lambert JB, Santiago-Blay JA, Ramos RR, Wu Y, Levy AJ. Nuclear magnetic resonance (NMR) examination of fossilized, semi-fossilized, and modern resins from the Caribbean Basin and surrounding regions. Life Excit Biol. 2015;2(4):180–209.

    Article  Google Scholar 

  16. Lambert JB, Heckenbach EA, Wu Y, Santiago-Blay JA. Characterization of plant exudates by principal-component and cluster analyses with nuclear magnetic resonance variables. J Nat Prod. 2010;73(10):1643–8.

    Article  CAS  Google Scholar 

  17. Lambert JB, Kozminski MA, Fahlstrom CA, Santiago-Blay JA. Proton nuclear magnetic resonance characterization of resins from the family Pinaceae. J Nat Prod. 2007;70(2):188–95.

    Article  CAS  Google Scholar 

  18. Bruni S, Guglielmi V. Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:613–22.

    Article  CAS  Google Scholar 

  19. Jung L, Métais MC, Bachoffner P. Physico-chemical analysis of an ointment dating from the 13th-14th century. Ann Pharm Fr. 1972;30(3):205–10.

    CAS  Google Scholar 

  20. Zoia L, Tolppa EL, Pirovano L, Salanti A, Orlandi M. 1H-NMR AND 31P-NMR characterization of the lipid fraction in archaeological ointments. Archaeometry. 2012;54(6):1076–99.

    Article  CAS  Google Scholar 

  21. Barreca S, Bruno M, Oddo L, Orecchio S. Preliminary study on analysis and removal of wax from a Carrara marble statue. Natural Product Research. 2015; https://doi.org/10.1080/14786419.2015.1113411.

  22. Gutierrez Blanco C, González Azpiroz MD, Fernández VA. Relationship between the working aquality of asturian jets (Spain) and their structure using parameters defend by 1H-NMR. Archaeometry. 2008;50(5):877–86.

    Article  CAS  Google Scholar 

  23. Crestini C, El Hadidi NMN, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin. Microchem J. 2009;92(2):150–4.

    Article  CAS  Google Scholar 

  24. Salanti A, Zoia L, Tolppa EL, Giachi G, Orlandi M. Characterization of waterlogged wood by NMR and GPC techniques. Microchem J. 2010;95(2):345–52.

    Article  CAS  Google Scholar 

  25. Zoia L, Salanti A, Orlandi M. Chemical characterization of archaeological wood: Softwood Vasa and hardwood Riksapplet case studies. J Cult Herit. 2015;16(4):428–37.

    Article  Google Scholar 

  26. Bronzato M, Calvini P, Federici C, Bogialli S, Favaro G, Meneghetti M, et al. Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study. Chem Eur J. 2013;19(29):9569–77.

    Article  CAS  Google Scholar 

  27. Spyros A. Quantitative determination of the distribution of free hydroxylic and carboxylic groups in unsaturated polyester and alkyd resins by 31P-NMR spectroscopy. J Appl Polym Sci. 2002;83(8):1635–42.

    Article  CAS  Google Scholar 

  28. Spyros A. Characterization of unsaturated polyester and alkyd resins using one- and two-dimensional NMR spectroscopy. J Appl Polym Sci. 2003;88(7):1881–8.

    Article  CAS  Google Scholar 

  29. Bartolozzi G, Marchiafava V, Mirabello V, Peruzzini M, Picollo M. Chemical curing in alkyd paints: an evaluation via FT-IR and NMR spectroscopies. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:520–5.

    Article  CAS  Google Scholar 

  30. Stamatakis G, Knuutinen U, Laitinen K, Spyros A. Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy. Anal Bioanal Chem. 2010;398(7–8):3203–14.

    Article  CAS  Google Scholar 

  31. Robinson N, Evershed RP, James Higgs W, Jerman K, Eglinton G. Proof of a pine wood origin for pitch from tudor (Mary Rose) and Etruscan shipwrecks: application of analytical organic chemistry in archaeology. Analyst. 1987;112(5):637–44.

    Article  CAS  Google Scholar 

  32. Al-Sammerrai F, Al-Sammerrai D, Al-Rawi J. The use of thermogravimetry and NMR spectroscopy in the attempted identification of the source of babylonian building asphalt. Thermochim Acta. 1987;115(C):181–8.

    Article  CAS  Google Scholar 

  33. Sauter F, Hayek EWH, Moche W, Jordis U. Identification of betulin in archaeological tar. Z Naturforsch C J Biosci. 1987;42(11–12):1151–2.

    Article  CAS  Google Scholar 

  34. Sauter F, Graf A, Hametner C, Fröhlich J. Studies in organic archaeometry III: prehistoric adhesives: alternatives to birch bark pitch could be ruled out. Arkivoc. 2001;2001(5):21–4.

    Article  Google Scholar 

  35. Sauter F, Graf A, Hametner C, Fröhlich J, Neugebauer JW, Preinfalk F. Studies in organic archaeometry IV: analysis of an organic agglutinant used to fix iron-age clay figurines to their base. Arkivoc. 2002;2002(1):35–9.

    Article  Google Scholar 

  36. Lauer F, Pätzold S, Gerlach R, Protze J, Willbold S, Amelung W. Phosphorus status in archaeological arable topsoil relicts-is it possible to reconstruct conditions for prehistoric agriculture in Germany? Geoderma. 2013;207–208(1):111–20.

    Article  CAS  Google Scholar 

  37. Zolotareva BN, Demkin VA. Humus in paleosols of archaeological monuments in the dry steppes of the Volga-Don interfluve. Eurasian Soil Sci. 2013;46(3):262–72.

    Article  CAS  Google Scholar 

  38. Ascough PL, Bird MI, Francis SM, Lebl T. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. J Archaeol Sci. 2011;38(1):69–78.

    Article  Google Scholar 

  39. Beck CW, Fellows CA, Mackennan E. Nuclear magnetic resonance spectrometry in archaeology. In: Archaeological Chemistry, ACS Advances in Chemistry Series. no. 138. Washington D.C. 1974. p. 226–35.

    Google Scholar 

  40. Zlateva B, Rangelov M. Chemical analysis of organic residues found in hellenistic time amphorae from SE Bulgaria. J Appl Spectrosc. 2015;82(2):221–7.

    Article  CAS  Google Scholar 

  41. Walther A, Ravasio D, Qin F, Wendland J, Meier S. Development of brewing science in (and since) the late 19th century: molecular profiles of 110–130 year old beers. Food Chem. 2015;183:227–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Spyros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spyros, A. (2018). Liquid-State NMR in Cultural Heritage and Archaeological Sciences. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_27

Download citation

Publish with us

Policies and ethics