Advertisement

High-Resolution Solid-State NMR Spectroscopy of Cultural Organic Material

  • Joseph B. Lambert
  • Yuyang Wu
  • Jorge A. Santiago-Blay
Reference work entry

Abstract

Solid state NMR methods permit the examination of the bulk material of objects of importance to cultural heritage, without differential sampling characteristic of liquid- and gas-phase techniques. Solid state 13C and 1H methods, primarily using magic angle spinning to enhance resolution and cross polarization (only with 13C) to enhance sensitivity (CP/MAS), permit analysis of organic components in a wide variety of historical and archaeological materials, including gemstones (amber, jet), wood, asphalt, food residues, rubber, lacquer, textiles, leather, parchment, paper, bone, and paintings. Heretofore the main drawback of the technique is that sample sizes are relatively large, 50–200 mg. Recent results, however, demonstrate that the use of a small sample chamber with very high spinning speeds can permit acquisition of data on <5 mg of sample.

Keywords

Amber asphalt bone jet lacquer leather paintings paper parchment rubber textiles wood 

References

  1. 1.
    Lambert JB, Mazzola EP. Nuclear magnetic resonance: an introduction to principles, applications, and experimental methods. Upper Saddle River: Pearson Education, Inc.; 2004.Google Scholar
  2. 2.
    Günther H. NMR spectroscopy: basic principles, concepts, and applications in chemistry. 2nd ed. Chichester: Wiley; 1996.Google Scholar
  3. 3.
    Fyfe CA. Solid state NMR for chemists. Guelph: C.F.C. Press; 1983.Google Scholar
  4. 4.
    Duer MJ. Introduction to solid-state NMR spectroscopy. Oxford, UK: Blackwell; 2004.Google Scholar
  5. 5.
    Frydman L, Hardwood JS. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J Am Chem Soc. 1995;117:5367–8.CrossRefGoogle Scholar
  6. 6.
    Schanda P, Meier BH, Ernst M. Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc. 2010;132:15957–67.CrossRefGoogle Scholar
  7. 7.
    Spyros A. Liquid-state NMR in cultural heritage and archaeological sciences. In: Modern magnetic resonance. 2nd ed. Switzerland: Springer International Publishing; 2017.Google Scholar
  8. 8.
    Lambert JB, Frye JS. Carbon functionalities in amber. Science. 1982;217:55–7.CrossRefGoogle Scholar
  9. 9.
    Langenheim JH. Plant resins: chemistry, evolution, ecology, and ethnobotany. Portland: Timber Press; 2003.Google Scholar
  10. 10.
    Lambert B, Santiago-Blay JA, Anderson KB. Chemical signatures of fossilized resins and recent plant exudates. Angew Chem Int Ed Engl. 2008;47:9608–16. Angew Chem, 120:9750–9760.CrossRefGoogle Scholar
  11. 11.
    Lambert JB, Levy AJ, Santiago-Blay JA, Wu Y. Nuclear magnetic resonance (NMR) characterization of Indonesian amber. Life: Excitement Biol. 2013;1:136–55.Google Scholar
  12. 12.
    Martínez-Richa A, Vera-Graziano R, Rivera A, Joseph-Nathan P. A solid-state Carbon-13 NMR analysis of ambers. Polymer. 2000;41:743–50.CrossRefGoogle Scholar
  13. 13.
    Lambert JB, Santiago-Blay JA, Rodríguez Ramos R, Wu Y, Levy AJ. Implications of nuclear magnetic resonance spectra of fossilized semi-fossilized, and modern resins from the Caribbean Basin and surrounding regions for possible pre-Columbian trans-Caribbean cultural contacts. Life: Excitement Biol. 2014;2:180–209.Google Scholar
  14. 14.
    Lambert JB, Tsai CY-h, Shah MC, Hurtley AE, Santiago-Blay JA. Distinguishing amber classes by proton magnetic resonance spectroscopy. Archaeometry. 2012;54:332–48.CrossRefGoogle Scholar
  15. 15.
    Lambert JB, Graham EA, Smith MT, Frye JS. Amber and Jet from Tipu, Belize. Ancient Mesoamerica. 1994;5:55–60.CrossRefGoogle Scholar
  16. 16.
    Lambert JB, Frye JS, Jurkiewicz A. The provenance and coal rank of jet by Carbon-13 nuclear magnetic resonance spectroscopy. Archaeometry. 1992;34:121–8.CrossRefGoogle Scholar
  17. 17.
    Lambert JB, Santiago-Blay JA, Wu Y, Levy AJ. The structure of stantienite. Bull Hist Chem. 2016;40:86–94.Google Scholar
  18. 18.
    Schaefer J, Stejskal EO. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc. 1976;98:1031–2.CrossRefGoogle Scholar
  19. 19.
    Lambert JB, Frye JS, Carriveau GW. The structure of oriental lacquer by solid state nuclear magnetic resonance spectroscopy, J. B. Lambert. Archaeometry. 1994;33:87–93.CrossRefGoogle Scholar
  20. 20.
    Spiker EC, Hatcher PG. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochim Cosmochim Acta. 1987;51:1385–91.CrossRefGoogle Scholar
  21. 21.
    Hatcher PG, Breger IA, Earl WL. Nuclear magnetic resonance studies of ancient buried wood-i observations on the origin of coal to the brown coal stage. Org Geochem. 1981;3:49–55.CrossRefGoogle Scholar
  22. 22.
    Attalla MI, Serra RG, Vassalo AM, Wilson MA. Structure of ancient buried wood from Phyllocladus trichomanoides. Org Geochem. 1988;12:235–44.CrossRefGoogle Scholar
  23. 23.
    Bardet M, Foray MF, Trân Q-K. High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem. 2002;74:4386–90.CrossRefGoogle Scholar
  24. 24.
    Bardet M, Foray MF, Maron S, Goncalves P, Trân Q-K. Characterization of wood components of Portuguese medieval dugout canoes with high-resolution solid-state NMR. Carbohydr Polym. 2004;57:419–24.CrossRefGoogle Scholar
  25. 25.
    Pournou A. Deterioration assessment of waterlogged archaeological lignocellulosic material via 13C CP/MAS NMR. Archaeometry. 2008;50:129–41.Google Scholar
  26. 26.
    Bardet M, Gerbaud G, Trân Q-K, Hediger S. Study of Interactions between polyethylene glycol and archaeological wood components by 13C high-resolution solid-state CP-MAS NMR. J Arch Sci. 2007;34:1670–6.CrossRefGoogle Scholar
  27. 27.
    Bardet M, Pournou A. Fossil wood from the miocene and oligocene epoch: chemistry and morphology. Magn Reson Chem. 2015;53:9–14.CrossRefGoogle Scholar
  28. 28.
    Abraham H. Asphalt and allied substances: their occurrence, modes of production, uses in the arts, and methods of testing. 4th ed. New York: D. Van Nostrand Co.; 1938.Google Scholar
  29. 29.
    Connan J, Nissenbaum A. The organic geochemistry of the hasbeya asphalt (Lebanon): comparison with asphalts from the Dead Sea area and Iraq. Org Geochem. 2004;35:775–89.CrossRefGoogle Scholar
  30. 30.
    Michon LC, Netzel DA, Turner TF, Martin D, Planche J-P. A 13C NMR and DSC study of the amorphous and crystalline phases in asphalts. Energy Fuel. 1999;13:602–10.CrossRefGoogle Scholar
  31. 31.
    Helms JR, Kong X, Salmon E, Hatcher PG, Schmidt-Rohr K, Mao J. Structural characterization of gilsonite bitumen by advanced nuclear magnetic resonance spectroscopy and ultrahigh resolution mass spectrometry revealing pyrrolic and aromatic rings substituted with aliphatic chains. Org Geochem. 2012;44:21–36.CrossRefGoogle Scholar
  32. 32.
    Al-Sammerrai F, Al-Sammerrai D, Al-Rawi J. The use of thermogravimetry and NMR spectroscopy in the attempted identification of the source of Babylonian building asphalt. Thermochim Acta. 1987;115:181–8.CrossRefGoogle Scholar
  33. 33.
    Oudemans TFM, Boon JJ, Botto RE. FTIR and Solid-State 13C CP/MAS NMR spectroscopy of charred and non-charred solid organic residues preserved in roman Iron age vessels from The Netherlands. Archaeometry. 2007;49:571–94.CrossRefGoogle Scholar
  34. 34.
    Oudemans TFM. Molecular studies of organic residues preserved in ancient vessels. Ph.D. Dissertation, Faculty of Archaeology, Leiden University, Leiden; 2006.Google Scholar
  35. 35.
    Sherriff BL, Tisdale MA, Sayer BG, Schwarz HP, Knif M. Nuclear magnetic resonance spectroscopic and isotopic analysis of carbonized residues from subarctic Canadian prehistoric pottery. Archaeometry. 1995;37:571–94.CrossRefGoogle Scholar
  36. 36.
    Styring AK, Manning H, Fraser RA, Wallace M, Jones G, Charles M, Heaton THE, Bogaard A, Evershed RP. The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. J Arch Sci. 2013;40:4767–79.CrossRefGoogle Scholar
  37. 37.
    Coe MD. America’s first civilization: discovering the olmecs. New York: The Smithsonian Library; 1968.Google Scholar
  38. 38.
    Hosler D, Burkett SL, Tarkanian MJ. Prehistoric polymers: rubber processing in ancient mesomerica. Science. 1999;284:1988–91.CrossRefGoogle Scholar
  39. 39.
    Lambert JB, Frye JS, Carriveau GW. The structure of oriental lacquer by solid-state nuclear magnetic resonance spectroscopy. Archaeometry. 1991;33:87–93.CrossRefGoogle Scholar
  40. 40.
    Kvavadze E, Bar-Yosef O, Belfer-Cohen A, Boaretto E, Jakeli N, Matskevich Z, Meshveliani T. 30,000-year-old wild flax fibers. Science. 2009;325:1359.CrossRefGoogle Scholar
  41. 41.
    Yafa S. Cotton: the biography of a revolutionary fiber. London: Penguin Group; 2005.Google Scholar
  42. 42.
    Adebajo MO, Frost RL. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochim Acta A. 2004;60:449–53.CrossRefGoogle Scholar
  43. 43.
    Princi E, Vicini S, Proiette N, Capitani D. Grafting polymerization on cellulose based textiles: a 13C solid state NMR characterization. Eur Polym J. 2005;218:343–52.Google Scholar
  44. 44.
    Taylor RE, French AD, Gamble GR, Himmesbacj DS, Stipanovic RD, Thibodeaux DP, Wakelyn PJ, Dybowski D. 1H and 13C solid-state NMR of Gossypium barbadense (Pima) cotton. J Mol Struct. 2008;878:177–84.CrossRefGoogle Scholar
  45. 45.
    Baias M, Demco DF, Popescu C, Fechete R, Melian C, Blümich B, Möller M. Thermal denaturation of hydrated wool keratin by 1H solid state NMR. J Phys Chem, Part B. 2009;113:2184–92.CrossRefGoogle Scholar
  46. 46.
    Asakura T, Suzuki Y, Nakazawa Y, Holland GP, Yarger JL. Elucidating silk structure using solid-state NMR. Soft Matter. 2013;9:11140–50.CrossRefGoogle Scholar
  47. 47.
    Creager MS, Jenkins JE, Thagard-Yeaman LA, Brooks AE, Jones JA, Lewis RV, Holland GP, Yarger JL. Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomolecules. 2010;11:2039–43.Google Scholar
  48. 48.
    Chûiô R, Shimaoka A, Nagaoka K, Kurata A, Inoue M. Primary structure of archeological silk and ancient climate. Polymer. 1996;37:3693–6.CrossRefGoogle Scholar
  49. 49.
    Chûiô R, Fukutani K, Magoshi Y. Estimation of physical properties of archaeological silk with NMR relaxation time and fluctuation-dissipation theorem in NMR spectroscopy of polymers in solution and in solid state. Am Chem Soc Symp Ser. 2002;834:83–91.Google Scholar
  50. 50.
    Bardet M, Gerbaud G, La Pape L, Hediger S, Trân Q-T, Boumlil N. Nuclear magnetic resonance and electron paramagnetic resonance as analytical tools to investigate the structural features of archaeological leathers. Anal Chem. 2009;81:1505–11.CrossRefGoogle Scholar
  51. 51.
    Capitani D, Di Tullio V, Proiette N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.CrossRefGoogle Scholar
  52. 52.
    Popescu C, Budrugeac P, Wortmann F-J, Miu L, Demco DE, Baias M. Assessment of collagen-based materials that are supports of cultural and historical objects. Polym Degrad Stab. 2008;93:976–82.CrossRefGoogle Scholar
  53. 53.
    Lambert JB. Traces of the past. Cambridge, MA: Helix Books, Perseus Publishing; 1997. p. 148.Google Scholar
  54. 54.
    Aliev AE. Solid-state NMR studies of collagen-based parchments and gelatin. Biopolymers. 2005;77:230–45.CrossRefGoogle Scholar
  55. 55.
    Odlyha M, Cohen NS, Foster GM, Aliev A, Verdonck E, Grandy D. Dynamic mechanical analysis (DMA), 13C solid state NMR and micro-thermomechanical studies of historical parchment. J Thermal Anal Calorimetry. 2003;71:939–50.CrossRefGoogle Scholar
  56. 56.
    Bastone S, Armetta F, Caponetti E. Physicochemical characterization of ancient paper and parchment with solid state nuclear magnetic resonance. In: Fifth European chemistry congress (EuCheMS) abstracts, Part 3, P-B1-006. 2014. http://euchems2014.org/abstract_submission.asp
  57. 57.
    Corsaro C, Mallamace D, Łojewska J, Mallamace F, Pietronero L, Missori M. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy. Sci Rep. 2013;3:2896.CrossRefGoogle Scholar
  58. 58.
    Huster D. Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu Rep NMR Spectrosc. 2008;64:127–59.CrossRefGoogle Scholar
  59. 59.
    Weber F, Böhme J, Scheidt HA, Gründer W, Rammelt S, Hacker M, Schulz-Siegmund M, Huster D. 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Med. 2012;3:464–75.Google Scholar
  60. 60.
    Mroue KH, MacKinnon N, Xu J, Zhu P, McNerny E, Kohn DH, Morris MD, Ramamoorthy A. High-resolution structural insights into bone: a solid-state NMR relaxation study utilizing paramagnetic doping. J Phys Chem B. 2012;116:11656–61.CrossRefGoogle Scholar
  61. 61.
    Duer MJ. The contribution of solid-state NMR spectroscopy to understanding biomineralization: atomic and molecular structure of bone. J Magn Reson. 2015;253:98–110.CrossRefGoogle Scholar
  62. 62.
    Lee AP, Klinowski J, Maseglia EA. Application of nuclear magnetic resonance spectroscopy to bone diagenesis. J Archaeol Sci. 1995;22:257–62.CrossRefGoogle Scholar
  63. 63.
    Alfano D, Albunia AR, Motta O, Proto A. Detection of diagenetic alterations by spectroscopic analysis on archaeological bones from the necropolis of poseidonia (Paestum): a case study. J Cult Herit. 2009;10:509–13.CrossRefGoogle Scholar
  64. 64.
    Salesse K, Urzel V, Dufour E, Castex D, Bruzek J, Dufourc EJ. Validation of bone apatite purification protocols for stable isotope analysis in bioarchaeology by solid-state nuclear magnetic resonance spectroscopy, Abstracts of the 82nd annual meeting of the American association of physical anthropologists. Am J Phys Anthropol. 2013;150(S56):239.Google Scholar
  65. 65.
    Turcu RV, Kelemen RVF, Popescu O, Simon S. Solid state NMR preliminary study on archaeological bones. Studia Univ Babeş-Bolyai Physica. 2012;57(2):61–8.Google Scholar
  66. 66.
    Blümich B. Magnetic resonance imaging and portable NMR in archaeological sciences. In: Modern Magnetic Resonance. 2nd ed. Switzerland: Springer International Publishing; 2017.Google Scholar
  67. 67.
    Kehlet C, Kuvvetli F, Catalano A, Dittmer J. Solid-state NMR for the study of Asger Jorn’s paintings. Microchem J. 2016;125:308–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joseph B. Lambert
    • 1
  • Yuyang Wu
    • 2
  • Jorge A. Santiago-Blay
    • 3
  1. 1.Department of ChemistryTrinity UniversitySan AntonioUSA
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA
  3. 3.Department of PaleobiologyNational Museum of Natural HistoryWashingtonUSA

Personalised recommendations