Advertisement

Quantitative Analysis of Time Domain NMR Relaxation Data

  • Søren B. Engelsen
  • Frans W. J. van den Berg
Reference work entry

Abstract

Time Domain 1H Nuclear Magnetic Resonance (TD NMR), also known as Low-Field NMR, is an extremely useful technique for measuring mobile water populations and fat protons in food and feed. The bulk constituents such as water, fats and carbohydrates can easily be detected and quantified with virtually no bias. The chemical and physical information gained from TD NMR experiments does require adequate data-analysis techniques in order to establish model-driven approaches for hypothesis testing, for rapid quantitative applications, as well as for explorative multivariate methods during hypothesis generation. Low field time domain relaxation data is characterized by a lack of structure and selectivity, normally being composite exponential decay functions which are direct functions of the mobility and/or compartmentalization of the molecular systems under study. The signal intensity at a given time is a weighted-proportional to the contributions from the measured substances, i.e. a slow-relaxing component contributes relatively more than a fast-relaxing component. In order to fully exploit in detail the quantitative structural and compositional information produced by TD NMR experiments multivariate data analysis is required. In this chapter different quantitative strategies-namely ratio fitting, discrete exponential fitting, POWERSLICING, multivariate curve resolution, partial least squares regression and inverse Laplace transformation combined with regression - will be demonstrated and compared. This qualitative and quantitative comparison will be based on a data set aimed at predict dry matter contents in potato tubers.

Keywords

NMR Chemometrics PCA PLS MCR ILT 

References

  1. 1.
    Guthausen G. Analysis of food and emulsions. TrAC Trends in Anal Chem. 2016;83(Part A):103–6.CrossRefGoogle Scholar
  2. 2.
    Lillford PJ, Clark AH, Jones DV. Distribution of water in heterogeneous food and model systems. In: Rowland RJ, editor. Water in polymers, ACS symposium series127. American Chemical Society; 1980. p. 177–195.  https://doi.org/10.1021/bk-1980-0127.ch010Google Scholar
  3. 3.
    Belton PS, Hills BP. The effect of diffusive exchange in heterogeneous systems on NMR line-shapes and relaxation processes. Mol Phys. 1987;61(4):999–1018.CrossRefGoogle Scholar
  4. 4.
    van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. In: Webb GA, editor. Annual reports on Nmr spectroscopy, vol. 69. London: Royal Society of Chemistry; 2010. p. 145–97.Google Scholar
  5. 5.
    Micklander E, Peshlov B, Purslow PP, Engelsen SB. NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends Food Sci Technol. 2002;13(9–10):341–6.CrossRefGoogle Scholar
  6. 6.
    Engelsen SB, Jensen MK, Pedersen HT, Nørgaard L, Munck L. NMR-baking and multivariate prediction of instrumental texture parameters in bread. J Cereal Sci. 2001;33(1):59–69.CrossRefGoogle Scholar
  7. 7.
    Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60:52–70.CrossRefGoogle Scholar
  8. 8.
    van den Berg F, Lyndgaard CB, Sorensen KM, Engelsen SB. Process analytical technology in the food industry. Trends Food Sci Technol. 2013;31(1):27–35.CrossRefGoogle Scholar
  9. 9.
    van Putte K, van den Enden J. Fully automated determination of solid fat content by pulsed NMR. J Am Oil Chem Soc. 1974;51(7):316–20.CrossRefGoogle Scholar
  10. 10.
    Bechmann IE, Pedersen HT, Nørgaard L, Engelsen SB. Comparative chemometric analysis of transverse low-field 1 H NMR relaxation data. In: Belton PS, Hills BP, Webb GA, editors. Advances in magnetic resonance in food science. Cambridge, UK: The Royal Society of Chemistry; 1999. p. 217–25. CrossRefGoogle Scholar
  11. 11.
    de Juan A, Jaumot J, Tauler R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal Methods. 2014;6(14):4964–76.CrossRefGoogle Scholar
  12. 12.
    Gerbanowski A, Rutledge DN, Feinberg MH, Ducauze CJ. Multivariate regression applied to time domain nuclear magnetic resonance signals: determination of moisture in meat products. Sci Aliment. 1997;17(3):309–23.Google Scholar
  13. 13.
    Haiduc AM, van Duynhoven JPM, Heussen P, Reszka AA, Reiffers-Magnani C. Multivariate modelling of the microstructural quality of food emulsions based on NMR. Food Res Int. 2007;40(4):425–34.CrossRefGoogle Scholar
  14. 14.
    Wold S, Martens H, Wold H. The multivariate calibration-problem in chemistry solved by the PLS method. Lect Notes Math. 1983;973:286–93.CrossRefGoogle Scholar
  15. 15.
    Thygesen LG. PLS calibration of pulse NMR free induction decay for determining moisture content and basic density of softwood above fiber saturation. Holzforschung. 1996;50(5):434–6.Google Scholar
  16. 16.
    Pedersen HT, Bro R, Engelsen SB. Slicing – a novel approach for unique deconvolution of NMR relaxation decays. In: Webb GA, Belton PS, Gil AM, Delgadillo I, editors. Magnetic resonance in food science: a view to the future. Cambridge: The Royal Society of Chemistry; 2001. p. 202–9. CrossRefGoogle Scholar
  17. 17.
    Pedersen HT, Bro R, Engelsen SB. Towards rapid and unique curve resolution of low-field NMR relaxation data: trilinear SLICING versus two-dimensional curve fitting. J Magn Reson. 2002;157(1):141–55.CrossRefGoogle Scholar
  18. 18.
    Manetti C, Castro C, Zbilut JP. Application of trilinear SLICING to analyse a single relaxation curve. J Magn Reson. 2004;168(2):273–7.CrossRefGoogle Scholar
  19. 19.
    Engelsen SB, Bro R. Power slicing. J Magn Reson. 2003;163(1):192–7.CrossRefGoogle Scholar
  20. 20.
    Harshman RA. Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, Vol. 16; 1970. p. 1–84.Google Scholar
  21. 21.
    Bro R. PARAFAC. Tutorial and applications. Chemom Intell Lab Syst. 1997;38:149–71.CrossRefGoogle Scholar
  22. 22.
    Sánchez E, Kowalski BR. Tensorial resolution: a direct trilinear decomposition. J Chemom. 1990;4:29–45.CrossRefGoogle Scholar
  23. 23.
    Tonning E, Polders D, Callaghan PT, Engelsen SB. A novel improved method for analysis of 2D diffusion-relaxation data-2D PARAFAC-Laplace decomposition. J Magn Reson. 2007;188(1):10–23.CrossRefGoogle Scholar
  24. 24.
    Prange M, Song Y-Q. Quantifying uncertainty in NMR spectra using Monte Carlo inversion. J Magn Reson. 2009;196(1):54–60.CrossRefGoogle Scholar
  25. 25.
    Menon RS, Rusinko MS, Allen PS. Multiexponential proton relaxation in model cellular systems. Magn Reson Med. 1991;20(2):196–213.CrossRefGoogle Scholar
  26. 26.
    Whittall KP, Mackay AL. Quantitative interpretation of NMR relaxation data. J Magn Reson. 1989;84(1):134–52.Google Scholar
  27. 27.
    Butler JP, Reeds JA, Dawson SV. Estimating solutions of 1st kind integral-equations with nonnegative constraints and optimal smoothing. SIAM J Numer Anal. 1981;18(3):381–97.CrossRefGoogle Scholar
  28. 28.
    Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27(3):229–42.CrossRefGoogle Scholar
  29. 29.
    Provencher SW, Dovi VG. Direct analysis of continous relaxation spectra. J Biochem Biophys Methods. 1979;1(6):313–8.CrossRefGoogle Scholar
  30. 30.
    Laue ED, Skilling J, Staunton J, Sibisi S, Brereton RG. Maximum-entropy method in nuclear magnetic resonance spectroscopy. J Magn Reson. 1985;62(3):437–52.Google Scholar
  31. 31.
    Tellier C, Mariette F, Guillement JP, Marchal P. Evolution of water proton nuclear magnetic relaxation during milk coagulation and syneresis – structural implications. J Agric Food Chem. 1993;41(12):2259–66.CrossRefGoogle Scholar
  32. 32.
    Mariette F, Guillement JP, Tellier C, Marchal P. Continuous relaxation time distribution decomposition by MEM. In: Rutledge DN, editor. Signal treatment and signal analysis in NMR data handling in science and technology, vol. 18. Amsterdam: Elsevier; 1996. p. 218–45.Google Scholar
  33. 33.
    Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of multiexponential decay data. J Magn Reson. 1998;132(1):65–77.CrossRefGoogle Scholar
  34. 34.
    Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of multiexponential decay data – II. Data spacing, T-2 data, systematic data errors, and diagnostics. J Magn Reson. 2000;147(2):273–85.CrossRefGoogle Scholar
  35. 35.
    Hansen CL, Thybo AK, Bertram HC, Viereck N, van den Berg F, Engelsen SB. Determination of dry matter content in potato tubers by low-field nuclear magnetic resonance (LF-NMR). J Agric Food Chem. 2010;58(19):10300–4.CrossRefGoogle Scholar
  36. 36.
    Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8.CrossRefGoogle Scholar
  37. 37.
    Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29(8):688–91.CrossRefGoogle Scholar
  38. 38.
    Wehrens R, Putter H, Buydens LMC. The bootstrap: a tutorial. Chemom Intell Lab Syst. 2000;54(1):35–52.CrossRefGoogle Scholar
  39. 39.
    Windig W, Antalek B. Direct exponential curve resolution algorithm (DECRA): a novel application of the generalized rank annihilation method for a single spectral mixture data set with exponentially decaying contribution profiles. Chemom Intell Lab Syst. 1997;37:241–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Søren B. Engelsen
    • 1
  • Frans W. J. van den Berg
    • 1
  1. 1.Chemometrics and Analytical Technology, Department of Food Science, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations