Skip to main content

Rheo-NMR: Applications to Food

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Typical consumer products such as ketchup, mayonnaise, hair gel, and coffee powder display a combination of solid-like and fluid-like properties. The shear flow behavior of these materials is usually examined with a rheometer, which in the simplest case provides a fluid viscosity as a function of the applied shear stress or strain rate. Traditional rheometry, however, does not provide information about the microscopic phenomena that underlie the apparent bulk flow behavior. Rheo-NMR, a combination between rheology and nuclear magnetic resonance (NMR) methodology, allows measurement and characterization of microscopic phenomena in the gap of shear geometries such as the Couette or cone-plate. Most notably, it provides access to the fluid velocity profile across the shear gap, the shape of which contains information about yield stress, shear thinning and thickening properties of the fluid, and flow heterogeneities. This chapter explores the basic concepts of rheology and rheo-NMR and illustrates the use of rheo-NMR to gain insight in the flow of food systems in two brief case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callaghan PT. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys. 1999;62(4):599–670.

    Article  CAS  Google Scholar 

  2. Li T-Q, Seymour JD, Powell RL, McCarthy MJ, McCarthy KL, Ödberg L. Visualization of flow patterns of cellulose fiber suspensions by NMR imaging. AICHE J. 1994;40(8):1408–11.

    Article  CAS  Google Scholar 

  3. Seymour JD, Maneval JE, McCarthy KL, McCarthy MJ, Powell RL. NMR velocity phase encoded measurements of fibrous suspensions. Phys Fluids A-Fluid. 1993;5(11):3010.

    Article  CAS  Google Scholar 

  4. Britton MM, Callaghan PT. NMR velocimetry study of the temperature dependent rheology of butter, semisoft butter and margarine. J Texture Stud. 2000;31(3):245–55.

    Article  Google Scholar 

  5. Hollingsworth KG, Johns ML. Rheo-nuclear magnetic resonance of emulsion systems. J Rheol. 2004;48(4):787–803.

    Article  CAS  Google Scholar 

  6. Bonn D, Rodts S, Groenink M, Rafaï S, Shahidzadeh-Bonn N, Coussot P. Some applications of magnetic resonance imaging in fluid mechanics: complex flows and complex fluids. Annu Rev Fluid Mech. 2008;40(1):209–33.

    Article  Google Scholar 

  7. Sederman AJ, Mantle MD, Buckley C, Gladden LF. MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson. 2004;166(2):182–9.

    Article  CAS  Google Scholar 

  8. Fukushima E. Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech. 1999;31(1):95–123.

    Article  Google Scholar 

  9. Batra R. Elements of Continuum Mechanics, AIAA Education Series, American Institute of Aeronautics and Astronautics; 2006.

    Google Scholar 

  10. Stokes GG. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Cambridge: Cambridge University Press; 1880.

    Google Scholar 

  11. Coussot P, Nguyen QD, Huynh HT, Bonn D. Viscosity bifurcation in thixotropic, yielding fluids. J Rheol. 2002;46(3):573.

    Article  CAS  Google Scholar 

  12. da C. Andrade EN. On the viscous flow in metals, and allied phenomena. P Roy Soc A-Math Phy. 1910;84(567):1–12.

    Article  Google Scholar 

  13. da C. Andrade EN. The flow in metals under large constant stresses. P Roy Soc A-Math Phy. 1914;90(619):329–42.

    Article  Google Scholar 

  14. Møller PCF, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter. 2006;2(4):274.

    Article  CAS  Google Scholar 

  15. Bonn D, Denn MM, Berthier L, Divoux T, Manneville S. Yield stress materials in soft condensed matter. Rev Mod Phys. 2017;89:035005. Published 21 August 2017. https://doi.org/10.1103/RevModPhys.89.035005

  16. Coussot P. Yield stress fluid flows: a review of experimental data. J Non-Newton Fluid. 2014;211:31–49.

    Article  CAS  Google Scholar 

  17. Bonn D, Denn MM. Yield stress fluids slowly yield to analysis. Science. 2009;324(5933):1401–2.

    Article  CAS  Google Scholar 

  18. Denn MM, Bonn D. Issues in the flow of yield-stress liquids. Rheol Acta. 2010;50(4):307–15.

    Article  CAS  Google Scholar 

  19. Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, et al. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett. 2002;88(21):218301.

    Article  CAS  Google Scholar 

  20. Møller PCF, Rodts S, Michels MA, Bonn D. Shear banding and yield stress in soft glassy materials. Phys Rev E. 2008;77(4 Pt 1):041507.

    Article  CAS  Google Scholar 

  21. Paredes J, Shahidzadeh-Bonn N, Bonn D. Shear banding in thixotropic and normal emulsions. J Phys-Condens Mat. 2011;23(28):284116.

    Article  CAS  Google Scholar 

  22. Schall P, van Hecke M. Shear bands in matter with granularity. Annu Rev Fluid Mech. 2010;42(1):67–88.

    Article  Google Scholar 

  23. Novak J, Britton MM. Magnetic resonance imaging of the rheology of ionic liquid colloidal suspensions. Soft Matter. 2013;9(9):2730.

    Article  CAS  Google Scholar 

  24. Divoux T, Fardin MA, Manneville S, Lerouge S. Shear banding of complex fluids. Annu Rev Fluid Mech. 2016;48(1):81–103.

    Article  Google Scholar 

  25. Mason TG, Ganesan K, van Zanten JH, Wirtz D, Kuo SC. Particle tracking microrheology of complex fluids. Phys Rev Lett. 1997;79(17):3282–5.

    Article  CAS  Google Scholar 

  26. Mason TG, Weitz DA. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett. 1995;74(7):1250–3.

    Article  CAS  Google Scholar 

  27. Moschakis T. Microrheology and particle tracking in food gels and emulsions. Curr Opin Colloid In. 2013;18(4):311–23.

    Article  CAS  Google Scholar 

  28. Van De Meent J-W, Sederman AJ, Gladden LF, Goldstein RE. Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J Fluid Mech. 2009;642:5.

    Article  CAS  Google Scholar 

  29. Stapf S, Han SI. NMR imaging in chemical engineering. Weinheim: Wiley; 2007.

    Google Scholar 

  30. van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Ann Rep NMR S. 2010;69:145–97.

    Google Scholar 

  31. Callaghan PT. Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford/New York: Oxford University Press; 2011.

    Book  Google Scholar 

  32. Gladden LF, Sederman AJ. Recent advances in flow MRI. J Magn Reson. 2013;229:2–11.

    Article  CAS  Google Scholar 

  33. Scheenen TW, Vergeldt FJ, Windt CW, de Jager PA, Van AH. Microscopic imaging of slow flow and diffusion: a pulsed field gradient stimulated echo sequence combined with turbo spin echo imaging. J Magn Reson. 2001;151(1):94–100.

    Article  CAS  Google Scholar 

  34. Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW. Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Resonan Ser A. 1996;123(1):131–4.

    Article  CAS  Google Scholar 

  35. Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson (1969). 1989;83(2):252–66.

    Article  CAS  Google Scholar 

  36. Rofe CJ, Lambert RK, Callaghan PT. Nuclear magnetic resonance imaging of flow for a shear-thinning polymer in cylindrical Couette geometry. J Rheol. 1994;38(4):875–87.

    Article  CAS  Google Scholar 

  37. Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A. Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E. 2008;78(3 Pt 2):036307.

    Article  CAS  Google Scholar 

  38. Coussot P, Tocquer L, Lanos C, Ovarlez G. Macroscopic vs. local rheology of yield stress fluids. J Non-Newton Fluid. 2009;158(1–3):85–90.

    Article  CAS  Google Scholar 

  39. Ovarlez G, Rodts S, Chateau X, Coussot P. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta. 2009;48(8):831–44.

    Article  CAS  Google Scholar 

  40. Ovarlez G, Mahaut F, Deboeuf S, Lenoir N, Hormozi S, Chateau X. Flows of suspensions of particles in yield stress fluids. J Rheol. 2015;59(6):1449–86.

    Article  CAS  Google Scholar 

  41. Coussot P, Gaulard F. Gravity flow instability of viscoplastic materials: the ketchup drip. Phys Rev E. 2005;72(3 Pt 1):031409.

    Article  CAS  Google Scholar 

  42. Tan HL, Feindel KW, McGrath KM. Shear banding in concentrated Na-caseinate emulsions. Soft Matter. 2010;6(15):3643.

    Article  CAS  Google Scholar 

  43. Bengtsson H, Tornberg EVA. Physicochemical characterization of fruit and vegetable fiber suspensions. I: effect of homogenization. J Texture Stud. 2011;42(4):268–80.

    Article  Google Scholar 

  44. Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett. 2011;6(1):417.

    Article  CAS  Google Scholar 

  45. Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90(2):735–64.

    Article  CAS  Google Scholar 

  46. Kuijk A, Koppert R, Versluis P, van Dalen G, Remijn C, Hazekamp J, et al. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils. Langmuir. 2013;29(47):14356–60.

    Article  CAS  Google Scholar 

  47. Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP. Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir. 2014;30(44):13362–8.

    Article  CAS  Google Scholar 

  48. Veen SJ, Versluis P, Kuijk A, Velikov KP. Microstructure and rheology of microfibril-polymer networks. Soft Matter. 2015;11(46):8907–12.

    Article  CAS  Google Scholar 

  49. de Kort DW, Veen SJ, Van AH, Bonn D, Velikov KP, van Duynhoven JP. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. Soft Matter. 2016;12(21):4739–44.

    Article  CAS  Google Scholar 

  50. Cheng DCH. Cone-and-plate viscometry: explicit formulae for shear stress and shear rate and the determination of inelastic thixotropic properties. Brit J Appl Phys. 1966;17(2):253–63.

    Article  CAS  Google Scholar 

  51. Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L. Spatial cooperativity in soft glassy flows. Nature. 2008;454(7200):84–7.

    Article  CAS  Google Scholar 

  52. Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P. Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J Rheol. 2002;46(3):709–32.

    Article  CAS  Google Scholar 

  53. Ovarlez G, FO B, SP R. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol. 2006;50(3):259.

    Article  CAS  Google Scholar 

  54. Coussot P. Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment. 2005:41–80. https://doi.org/10.1002/0471720577.ch2

    Book  Google Scholar 

  55. Bird RB, Armstrong RC, Hassager O. Dynamics of polymeric liquids. New York: Wiley; (1987). 672 p.

    Google Scholar 

  56. Mendes R, Vinay G, Ovarlez G, Coussot P. Reversible and irreversible destructuring flow in waxy oils: an MRI study. J Non-Newton Fluid. 2015;220:77–86.

    Article  CAS  Google Scholar 

  57. Cui MM, Adrian RJ. Refractive index matching and marking methods for highly concentrated solid-liquid flows. Exp Fluids. 1997;22(3):261–4.

    Article  CAS  Google Scholar 

  58. Isa L, Besseling R, Weeks ER, Poon WCK. Experimental studies of the flow of concentrated hard sphere suspensions into a constriction. J Phys Conf Ser. 2006;40:124–32.

    Article  Google Scholar 

  59. Wiederseiner S, Andreini N, Epely-Chauvin G, Ancey C. Refractive-index and density matching in concentrated particle suspensions: a review. Exp Fluids. 2010;50(5):1183–206.

    Article  Google Scholar 

  60. Dijksman JA, Rietz F, Lorincz KA, van Hecke M, Losert W. Invited Article: Refractive index matched scanning of dense granular materials. Rev Sci Instrum. 2012;83(1):011301.

    Article  CAS  Google Scholar 

  61. de Cagny H, Fall A, Denn MM, Bonn D. Local rheology of suspensions and dry granular materials. J Rheol. 2015;59(4):957–69.

    Article  CAS  Google Scholar 

  62. Callaghan PT, Gil AM. Rheo-NMR of semidilute polyacrylamide in water. Macromolecules. 2000;33(11):4116–24.

    Article  CAS  Google Scholar 

  63. Callaghan P. Rheo-NMR and velocity imaging. Curr Opin Colloid Interface Sci. 2006;11(1):13–8.

    Article  CAS  Google Scholar 

  64. de Kort DW, van Duynhoven JPM, Van AH, Mariette F. Nanoparticle diffusometry for quantitative assessment of submicron structure in food biopolymer networks. Trends Food Sci Technol. 2015;42(1):13–26.

    Article  CAS  Google Scholar 

  65. Masaro L, Zhu XX. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci. 1999;24(5):731–75.

    Article  CAS  Google Scholar 

  66. Sollich P, Lequeux F, Hébraud P, Cates ME. Rheology of soft glassy materials. Phys Rev Lett. 1997;78(10):2020–3.

    Article  CAS  Google Scholar 

  67. Muthupillai R, Lomas D, Rossman P, Greenleaf J, Manduca A, Ehman R. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.

    Article  CAS  Google Scholar 

  68. Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.

    Article  CAS  Google Scholar 

  69. Sanfratello L, Fukushima E, Behringer RP. Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly. Granul Matter. 2008;11(1):1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan W. de Kort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Kort, D.W., Nikolaeva, T., Dijksman, J.A. (2018). Rheo-NMR: Applications to Food. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_19

Download citation

Publish with us

Policies and ethics