Advertisement

Rheo-NMR: Applications to Food

  • Daan W. de Kort
  • Tatiana Nikolaeva
  • Joshua A. Dijksman
Reference work entry

Abstract

Typical consumer products such as ketchup, mayonnaise, hair gel, and coffee powder display a combination of solid-like and fluid-like properties. The shear flow behavior of these materials is usually examined with a rheometer, which in the simplest case provides a fluid viscosity as a function of the applied shear stress or strain rate. Traditional rheometry, however, does not provide information about the microscopic phenomena that underlie the apparent bulk flow behavior. Rheo-NMR, a combination between rheology and nuclear magnetic resonance (NMR) methodology, allows measurement and characterization of microscopic phenomena in the gap of shear geometries such as the Couette or cone-plate. Most notably, it provides access to the fluid velocity profile across the shear gap, the shape of which contains information about yield stress, shear thinning and thickening properties of the fluid, and flow heterogeneities. This chapter explores the basic concepts of rheology and rheo-NMR and illustrates the use of rheo-NMR to gain insight in the flow of food systems in two brief case studies.

Keywords

Rheology Rheo-NMR Complex fluids Shear flow Yield stress Herschel-Bulkley Flow curve Microscopy 

References

  1. 1.
    Callaghan PT. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys. 1999;62(4):599–670.CrossRefGoogle Scholar
  2. 2.
    Li T-Q, Seymour JD, Powell RL, McCarthy MJ, McCarthy KL, Ödberg L. Visualization of flow patterns of cellulose fiber suspensions by NMR imaging. AICHE J. 1994;40(8):1408–11.CrossRefGoogle Scholar
  3. 3.
    Seymour JD, Maneval JE, McCarthy KL, McCarthy MJ, Powell RL. NMR velocity phase encoded measurements of fibrous suspensions. Phys Fluids A-Fluid. 1993;5(11):3010.CrossRefGoogle Scholar
  4. 4.
    Britton MM, Callaghan PT. NMR velocimetry study of the temperature dependent rheology of butter, semisoft butter and margarine. J Texture Stud. 2000;31(3):245–55.CrossRefGoogle Scholar
  5. 5.
    Hollingsworth KG, Johns ML. Rheo-nuclear magnetic resonance of emulsion systems. J Rheol. 2004;48(4):787–803.CrossRefGoogle Scholar
  6. 6.
    Bonn D, Rodts S, Groenink M, Rafaï S, Shahidzadeh-Bonn N, Coussot P. Some applications of magnetic resonance imaging in fluid mechanics: complex flows and complex fluids. Annu Rev Fluid Mech. 2008;40(1):209–33.CrossRefGoogle Scholar
  7. 7.
    Sederman AJ, Mantle MD, Buckley C, Gladden LF. MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson. 2004;166(2):182–9.CrossRefGoogle Scholar
  8. 8.
    Fukushima E. Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech. 1999;31(1):95–123.CrossRefGoogle Scholar
  9. 9.
    Batra R. Elements of Continuum Mechanics, AIAA Education Series, American Institute of Aeronautics and Astronautics; 2006.Google Scholar
  10. 10.
    Stokes GG. On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Cambridge: Cambridge University Press; 1880.Google Scholar
  11. 11.
    Coussot P, Nguyen QD, Huynh HT, Bonn D. Viscosity bifurcation in thixotropic, yielding fluids. J Rheol. 2002;46(3):573.CrossRefGoogle Scholar
  12. 12.
    da C. Andrade EN. On the viscous flow in metals, and allied phenomena. P Roy Soc A-Math Phy. 1910;84(567):1–12.CrossRefGoogle Scholar
  13. 13.
    da C. Andrade EN. The flow in metals under large constant stresses. P Roy Soc A-Math Phy. 1914;90(619):329–42.CrossRefGoogle Scholar
  14. 14.
    Møller PCF, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter. 2006;2(4):274.CrossRefGoogle Scholar
  15. 15.
    Bonn D, Denn MM, Berthier L, Divoux T, Manneville S. Yield stress materials in soft condensed matter. Rev Mod Phys. 2017;89:035005. Published 21 August 2017.  https://doi.org/10.1103/RevModPhys.89.035005
  16. 16.
    Coussot P. Yield stress fluid flows: a review of experimental data. J Non-Newton Fluid. 2014;211:31–49.CrossRefGoogle Scholar
  17. 17.
    Bonn D, Denn MM. Yield stress fluids slowly yield to analysis. Science. 2009;324(5933):1401–2.CrossRefGoogle Scholar
  18. 18.
    Denn MM, Bonn D. Issues in the flow of yield-stress liquids. Rheol Acta. 2010;50(4):307–15.CrossRefGoogle Scholar
  19. 19.
    Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, et al. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett. 2002;88(21):218301.CrossRefGoogle Scholar
  20. 20.
    Møller PCF, Rodts S, Michels MA, Bonn D. Shear banding and yield stress in soft glassy materials. Phys Rev E. 2008;77(4 Pt 1):041507.CrossRefGoogle Scholar
  21. 21.
    Paredes J, Shahidzadeh-Bonn N, Bonn D. Shear banding in thixotropic and normal emulsions. J Phys-Condens Mat. 2011;23(28):284116.CrossRefGoogle Scholar
  22. 22.
    Schall P, van Hecke M. Shear bands in matter with granularity. Annu Rev Fluid Mech. 2010;42(1):67–88.CrossRefGoogle Scholar
  23. 23.
    Novak J, Britton MM. Magnetic resonance imaging of the rheology of ionic liquid colloidal suspensions. Soft Matter. 2013;9(9):2730.CrossRefGoogle Scholar
  24. 24.
    Divoux T, Fardin MA, Manneville S, Lerouge S. Shear banding of complex fluids. Annu Rev Fluid Mech. 2016;48(1):81–103.CrossRefGoogle Scholar
  25. 25.
    Mason TG, Ganesan K, van Zanten JH, Wirtz D, Kuo SC. Particle tracking microrheology of complex fluids. Phys Rev Lett. 1997;79(17):3282–5.CrossRefGoogle Scholar
  26. 26.
    Mason TG, Weitz DA. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett. 1995;74(7):1250–3.CrossRefGoogle Scholar
  27. 27.
    Moschakis T. Microrheology and particle tracking in food gels and emulsions. Curr Opin Colloid In. 2013;18(4):311–23.CrossRefGoogle Scholar
  28. 28.
    Van De Meent J-W, Sederman AJ, Gladden LF, Goldstein RE. Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J Fluid Mech. 2009;642:5.CrossRefGoogle Scholar
  29. 29.
    Stapf S, Han SI. NMR imaging in chemical engineering. Weinheim: Wiley; 2007.Google Scholar
  30. 30.
    van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Ann Rep NMR S. 2010;69:145–97.Google Scholar
  31. 31.
    Callaghan PT. Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford/New York: Oxford University Press; 2011.CrossRefGoogle Scholar
  32. 32.
    Gladden LF, Sederman AJ. Recent advances in flow MRI. J Magn Reson. 2013;229:2–11.CrossRefGoogle Scholar
  33. 33.
    Scheenen TW, Vergeldt FJ, Windt CW, de Jager PA, Van AH. Microscopic imaging of slow flow and diffusion: a pulsed field gradient stimulated echo sequence combined with turbo spin echo imaging. J Magn Reson. 2001;151(1):94–100.CrossRefGoogle Scholar
  34. 34.
    Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW. Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Resonan Ser A. 1996;123(1):131–4.CrossRefGoogle Scholar
  35. 35.
    Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson (1969). 1989;83(2):252–66.CrossRefGoogle Scholar
  36. 36.
    Rofe CJ, Lambert RK, Callaghan PT. Nuclear magnetic resonance imaging of flow for a shear-thinning polymer in cylindrical Couette geometry. J Rheol. 1994;38(4):875–87.CrossRefGoogle Scholar
  37. 37.
    Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A. Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E. 2008;78(3 Pt 2):036307.CrossRefGoogle Scholar
  38. 38.
    Coussot P, Tocquer L, Lanos C, Ovarlez G. Macroscopic vs. local rheology of yield stress fluids. J Non-Newton Fluid. 2009;158(1–3):85–90.CrossRefGoogle Scholar
  39. 39.
    Ovarlez G, Rodts S, Chateau X, Coussot P. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta. 2009;48(8):831–44.CrossRefGoogle Scholar
  40. 40.
    Ovarlez G, Mahaut F, Deboeuf S, Lenoir N, Hormozi S, Chateau X. Flows of suspensions of particles in yield stress fluids. J Rheol. 2015;59(6):1449–86.CrossRefGoogle Scholar
  41. 41.
    Coussot P, Gaulard F. Gravity flow instability of viscoplastic materials: the ketchup drip. Phys Rev E. 2005;72(3 Pt 1):031409.CrossRefGoogle Scholar
  42. 42.
    Tan HL, Feindel KW, McGrath KM. Shear banding in concentrated Na-caseinate emulsions. Soft Matter. 2010;6(15):3643.CrossRefGoogle Scholar
  43. 43.
    Bengtsson H, Tornberg EVA. Physicochemical characterization of fruit and vegetable fiber suspensions. I: effect of homogenization. J Texture Stud. 2011;42(4):268–80.CrossRefGoogle Scholar
  44. 44.
    Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett. 2011;6(1):417.CrossRefGoogle Scholar
  45. 45.
    Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012;90(2):735–64.CrossRefGoogle Scholar
  46. 46.
    Kuijk A, Koppert R, Versluis P, van Dalen G, Remijn C, Hazekamp J, et al. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils. Langmuir. 2013;29(47):14356–60.CrossRefGoogle Scholar
  47. 47.
    Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP. Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir. 2014;30(44):13362–8.CrossRefGoogle Scholar
  48. 48.
    Veen SJ, Versluis P, Kuijk A, Velikov KP. Microstructure and rheology of microfibril-polymer networks. Soft Matter. 2015;11(46):8907–12.CrossRefGoogle Scholar
  49. 49.
    de Kort DW, Veen SJ, Van AH, Bonn D, Velikov KP, van Duynhoven JP. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. Soft Matter. 2016;12(21):4739–44.CrossRefGoogle Scholar
  50. 50.
    Cheng DCH. Cone-and-plate viscometry: explicit formulae for shear stress and shear rate and the determination of inelastic thixotropic properties. Brit J Appl Phys. 1966;17(2):253–63.CrossRefGoogle Scholar
  51. 51.
    Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L. Spatial cooperativity in soft glassy flows. Nature. 2008;454(7200):84–7.CrossRefGoogle Scholar
  52. 52.
    Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P. Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J Rheol. 2002;46(3):709–32.CrossRefGoogle Scholar
  53. 53.
    Ovarlez G, FO B, SP R. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol. 2006;50(3):259.CrossRefGoogle Scholar
  54. 54.
    Coussot P. Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment. 2005:41–80.  https://doi.org/10.1002/0471720577.ch2CrossRefGoogle Scholar
  55. 55.
    Bird RB, Armstrong RC, Hassager O. Dynamics of polymeric liquids. New York: Wiley; (1987). 672 p.Google Scholar
  56. 56.
    Mendes R, Vinay G, Ovarlez G, Coussot P. Reversible and irreversible destructuring flow in waxy oils: an MRI study. J Non-Newton Fluid. 2015;220:77–86.CrossRefGoogle Scholar
  57. 57.
    Cui MM, Adrian RJ. Refractive index matching and marking methods for highly concentrated solid-liquid flows. Exp Fluids. 1997;22(3):261–4.CrossRefGoogle Scholar
  58. 58.
    Isa L, Besseling R, Weeks ER, Poon WCK. Experimental studies of the flow of concentrated hard sphere suspensions into a constriction. J Phys Conf Ser. 2006;40:124–32.CrossRefGoogle Scholar
  59. 59.
    Wiederseiner S, Andreini N, Epely-Chauvin G, Ancey C. Refractive-index and density matching in concentrated particle suspensions: a review. Exp Fluids. 2010;50(5):1183–206.CrossRefGoogle Scholar
  60. 60.
    Dijksman JA, Rietz F, Lorincz KA, van Hecke M, Losert W. Invited Article: Refractive index matched scanning of dense granular materials. Rev Sci Instrum. 2012;83(1):011301.CrossRefGoogle Scholar
  61. 61.
    de Cagny H, Fall A, Denn MM, Bonn D. Local rheology of suspensions and dry granular materials. J Rheol. 2015;59(4):957–69.CrossRefGoogle Scholar
  62. 62.
    Callaghan PT, Gil AM. Rheo-NMR of semidilute polyacrylamide in water. Macromolecules. 2000;33(11):4116–24.CrossRefGoogle Scholar
  63. 63.
    Callaghan P. Rheo-NMR and velocity imaging. Curr Opin Colloid Interface Sci. 2006;11(1):13–8.CrossRefGoogle Scholar
  64. 64.
    de Kort DW, van Duynhoven JPM, Van AH, Mariette F. Nanoparticle diffusometry for quantitative assessment of submicron structure in food biopolymer networks. Trends Food Sci Technol. 2015;42(1):13–26.CrossRefGoogle Scholar
  65. 65.
    Masaro L, Zhu XX. Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci. 1999;24(5):731–75.CrossRefGoogle Scholar
  66. 66.
    Sollich P, Lequeux F, Hébraud P, Cates ME. Rheology of soft glassy materials. Phys Rev Lett. 1997;78(10):2020–3.CrossRefGoogle Scholar
  67. 67.
    Muthupillai R, Lomas D, Rossman P, Greenleaf J, Manduca A, Ehman R. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.CrossRefGoogle Scholar
  68. 68.
    Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5(4):237–54.CrossRefGoogle Scholar
  69. 69.
    Sanfratello L, Fukushima E, Behringer RP. Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly. Granul Matter. 2008;11(1):1–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daan W. de Kort
    • 1
  • Tatiana Nikolaeva
    • 1
  • Joshua A. Dijksman
    • 2
  1. 1.Laboratory of BiophysicsWageningen University and ResearchWageningenThe Netherlands
  2. 2.Physical Chemistry and Soft MatterWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations