Skip to main content

In Situ Studies of Plant Seeds Using 13C or 1H MAS NMR and 1H PFG NMR Approaches

  • Reference work entry
  • First Online:
  • 279 Accesses

Abstract

NMR can be used for in situ studies of lipidic components, mainly triacylglycerols (TAG), in mature seeds. Lipids can be one of the most abundant constituents of seeds in oleaginous crops. The inputs of high-resolution solid-state 1H or 13C NMR and pulsed field gradient 1H NMR (PFG NMR) are presented in this chapter. By combining single pulse excitation (SP) and cross-polarization (CP) experiments, both liquid and solid domains of plant seeds can be characterized and the assignments of the corresponding 13C and 1H can be performed. As TAG are confined in oil bodies (OBs), analysis of their diffusion properties, determined with PFG NMR, is a well-suited experimental approach to determine OB sizes. In fact, at long diffusion time, TAG mean squared displacement is limited by the OB size. In order to access the OB size distribution, strong intensities of magnetic field gradients are generally required. However, using a standard liquid-phase NMR probe equipped with a weak-intensity gradient coil, the mean size of OBs can be determined. OB diameters obtained by PFG NMR were fully consistent with previously published values obtained by microscopy techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lahaye M, Falourd X, Limami AM, Foucat L. Water mobility and microstructure evolution in the germinating Medicago truncatula seed studied by NMR relaxometry. A revisited interpretation of multicomponent relaxation. J Agric Food Chem. 2015;63(6):1698–710.

    Article  CAS  Google Scholar 

  2. Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants. J Lipid Res. 2012;53(2):215–26.

    Article  CAS  Google Scholar 

  3. Pinzi S, Garcia IL, Lopez-Gimenez FJ, de Castro MDL, Dorado G, Dorado MP. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel. 2009;23:2325–41.

    Article  CAS  Google Scholar 

  4. Russo D, Dassisti M, Lawlor V, Olabi AG. State of the art of biofuels from pure plant oil. Renew Sustain Energy Rev. 2012;16(6):4056–70.

    Article  CAS  Google Scholar 

  5. Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–45.

    Article  CAS  Google Scholar 

  6. Huang AHC. Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:177–200.

    Article  CAS  Google Scholar 

  7. Murphy DJ. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res. 1993;32(3):247–80.

    Article  CAS  Google Scholar 

  8. Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 1993;101(1):267–76.

    Article  CAS  Google Scholar 

  9. Huang AHC. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996;110(4):1055–61.

    Article  CAS  Google Scholar 

  10. Murphy DJ, Hernandez-Pinzon I, Patel K. Role of lipid bodies and lipid-body proteins in seeds and other tissues. J Plant Physiol. 2001;158(4):471–8.

    Article  CAS  Google Scholar 

  11. Hsieh K, Huang AHC. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol. 2004;136(3):3427–34.

    Article  CAS  Google Scholar 

  12. Odonnell DJ, Ackerman JJH, Maciel GE. Comparative-study of whole seed protein and starch content via cross polarization magic angle spinning C-13 nuclear magnetic-resonance spectroscopy. J Agric Food Chem. 1981;29(3):514–8.

    Article  CAS  Google Scholar 

  13. Bardet M, Foray MF, Bourguignon J, Krajewski P. Investigation of seeds with high-resolution solid-state C-13 NMR. Magn Reson Chem. 2001;39(12):733–8.

    Article  CAS  Google Scholar 

  14. Brown SP, Spiess HW. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev. 2001;101(12):4125–55.

    Article  CAS  Google Scholar 

  15. Brown SP. Applications of high-resolution H-1 solid-state NMR. Solid State Nucl Magn Reson. 2012;41:1–27.

    Article  CAS  Google Scholar 

  16. Polenova T, Gupta R, Goldbourt A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem. 2015;87(11):5458–69.

    Article  CAS  Google Scholar 

  17. Footitt S, Vargas D, Cohn MA. Seed dormancy in red rice. A C-13 NMR study of the metabolim of dormancy -breaking chemicals. Physiol Plant. 1995;94(4):667–71.

    Article  CAS  Google Scholar 

  18. Grimmer AR, Kretschmer A, Cajipe VB. Influence of magic angle spinning on sample temperature. Magn Reson Chem. 1997;35(2):86–90.

    Article  CAS  Google Scholar 

  19. Rutar V. Magic angle sample spinning NMR-spectroscopy of liquids as a nondestructive method of plant seeds. J Agric Food Chem. 1989;37(1):67–70.

    Article  CAS  Google Scholar 

  20. Hutton WC, Garbow JR, Hayes TR. Nondestructive NMR determination of oil composition in transformed Canola seeds. Lipids. 1999;34(12):1339–46.

    Article  CAS  Google Scholar 

  21. Bardet M, Foray MF. Discrimination of C-13 NMR signals in solid material with liquid-like behavior presenting residual dipolar proton-proton homonuclear interactions: application on seeds. J Magn Reson. 2003;160(2):157–60.

    Article  CAS  Google Scholar 

  22. Bardet M, Maron S, Foray MF, Berger M, Guillermo A. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state C-13 NMR. Radiat Res. 2004;161(4):458–63.

    Article  CAS  Google Scholar 

  23. Sayer BG, Preston CM. A carbon-13 magic angle spinning nuclear magnetic resonance study of the germination of conifer seeds. Seed Sci Technol. 1996;24(2):321–9.

    Google Scholar 

  24. Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR, Kermode AR. In vivo C-13 NMR metabolite profiling: potential for understanding and assessing conifer seed quality. J Exp Bot. 2005;56(418):2253–65.

    Article  CAS  Google Scholar 

  25. Doddrell DM, Pegg DT, Bendall MR. Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson. 1982;48(2):323–7.

    CAS  Google Scholar 

  26. Bardet M, Gagnaire D, Nardin R, Robert D, Vincendon M. Use of C-13 enriched wood for structural NMR investigation of wood and wood components, cellulose and lignin, in solid and in solution. Holzforschung. 1986;40:17–24.

    CAS  Google Scholar 

  27. Sacchi R, Addeo F, Paolillo L. 1H and 13C NMR of virgin olive oil. An overview. Magn Reson Chem. 1997;35:S133–45.

    Article  CAS  Google Scholar 

  28. de Oliveira CMR, Iacomini M, Alquini Y, Gorin PAJ. Microscopic and NMR analysis of the external coat from seeds of Magonia pubescens. New Phytol. 2001;152(3):501–9.

    Article  Google Scholar 

  29. Stejskal EO, Tanner JE. Spin diffusion measurements – spin echoes in presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    Article  CAS  Google Scholar 

  30. Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by pulsed-gradient spin-echo method. J Chem Phys. 1968;49(4):1768–77.

    Article  CAS  Google Scholar 

  31. Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion.1. Basic theory. Concepts Magn Reson. 1997;9(5):299–336.

    Article  CAS  Google Scholar 

  32. Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Exp Aspects Concepts Magn Reson. 1998;10(4):197–237.

    Article  CAS  Google Scholar 

  33. Callaghan PT. Principles of nuclear magnetic resonance miscroscopy, 2003 ed. Oxford: Oxford University Press; 1991.

    Google Scholar 

  34. Fleischer G, Skirda VD, Werner A. NMR-investigation of restricted self-diffusion of oil in rape seeds. Eur Biophys J. 1990;19(1):25–30.

    Article  CAS  Google Scholar 

  35. Zakhartchenko NL, Skirda VD, Valiullin RR. Self-diffusion of water and oil in peanuts investigated by PFG NMR. Magn Reson Imaging. 1998;16(5–6):583–6.

    Article  CAS  Google Scholar 

  36. Carlton KJ, Halse MR, Maphossa AM, Mallett MJD. NMR stray-field analysis of oil drop size distribution in peanut cotyledons. Eur Biophys J. 2001;29(8):574–8.

    Article  CAS  Google Scholar 

  37. Guillermo A, Bardet M. In situ pulsed-field gradient NMR determination of the size of oil bodies in vegetable seeds. Analysis of the effect of the gradient pulse length. Anal Chem. 2007;79(17):6718–26.

    Article  CAS  Google Scholar 

  38. Lahrech H, Zoula S, Farion R, Remy C, Decorps M. In vivo measurement of the size of lipid droplets in an intracerebral glioma in the rat. Magn Reson Med. 2001;45(3):409–14.

    Article  CAS  Google Scholar 

  39. Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson. 1989;83(2):252–66.

    CAS  Google Scholar 

  40. Fordham EJ, Gibbs SJ, Hall LD. Partially restricted diffusion in a permeable sandstone – observations by stimulated echo PFG NMR. Magn Reson Imaging. 1994;12(2):279–84.

    Article  CAS  Google Scholar 

  41. Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115(2):260–4.

    Article  CAS  Google Scholar 

  42. Gromova M, Guillermo A, Bayle P-A, Bardet M. In vivo measurement of the size of oil bodies in plant seeds using a simple and robust pulsed field gradient NMR method. Eur Biophys J Biophys Lett. 2015;44(3):121–9.

    Article  CAS  Google Scholar 

  43. Mantese AI, Medan D, Hall AJ. Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity. Ann Bot. 2006;97(6):999–1010.

    Article  CAS  Google Scholar 

  44. Fu Y-B, Ahmed Z, Diederichsen A. Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv Physiol. 2015;3:1–16.

    Article  CAS  Google Scholar 

  45. Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016;243:1–9.

    Article  CAS  Google Scholar 

  46. Muller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schroder HC, Reiber A, et al. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol. 2006;153(1):31–41.

    Article  CAS  Google Scholar 

  47. Chudek JA, Hunter G. Magnetic resonance imaging of plants. Prog Nucl Magn Reson Spectrosc. 1997;31:43–62.

    Article  CAS  Google Scholar 

  48. Borisjuk L, Rolletschek H, Neuberger T. Nuclear magnetic resonance imaging of lipid in living plants. Prog Lipid Res. 2013;52(4):465–87.

    Article  CAS  Google Scholar 

  49. Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, et al. A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed. Plant Physiol. 2013;161(2):583–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bardet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gromova, M., Guillermo, A., Bayle, PA., Bardet, M. (2018). In Situ Studies of Plant Seeds Using 13C or 1H MAS NMR and 1H PFG NMR Approaches. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_18

Download citation

Publish with us

Policies and ethics