In Situ Studies of Plant Seeds Using 13C or 1H MAS NMR and 1H PFG NMR Approaches

  • Marina Gromova
  • Armel Guillermo
  • Pierre-Alain Bayle
  • Michel Bardet
Reference work entry


NMR can be used for in situ studies of lipidic components, mainly triacylglycerols (TAG), in mature seeds. Lipids can be one of the most abundant constituents of seeds in oleaginous crops. The inputs of high-resolution solid-state 1H or 13C NMR and pulsed field gradient 1H NMR (PFG NMR) are presented in this chapter. By combining single pulse excitation (SP) and cross-polarization (CP) experiments, both liquid and solid domains of plant seeds can be characterized and the assignments of the corresponding 13C and 1H can be performed. As TAG are confined in oil bodies (OBs), analysis of their diffusion properties, determined with PFG NMR, is a well-suited experimental approach to determine OB sizes. In fact, at long diffusion time, TAG mean squared displacement is limited by the OB size. In order to access the OB size distribution, strong intensities of magnetic field gradients are generally required. However, using a standard liquid-phase NMR probe equipped with a weak-intensity gradient coil, the mean size of OBs can be determined. OB diameters obtained by PFG NMR were fully consistent with previously published values obtained by microscopy techniques.


NMR Solid-state NMR Magic-Angle Spinning (MAS) PFG NMR Seeds Oil Body (OB) Size measurement 


  1. 1.
    Lahaye M, Falourd X, Limami AM, Foucat L. Water mobility and microstructure evolution in the germinating Medicago truncatula seed studied by NMR relaxometry. A revisited interpretation of multicomponent relaxation. J Agric Food Chem. 2015;63(6):1698–710.CrossRefGoogle Scholar
  2. 2.
    Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants. J Lipid Res. 2012;53(2):215–26.CrossRefGoogle Scholar
  3. 3.
    Pinzi S, Garcia IL, Lopez-Gimenez FJ, de Castro MDL, Dorado G, Dorado MP. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel. 2009;23:2325–41.CrossRefGoogle Scholar
  4. 4.
    Russo D, Dassisti M, Lawlor V, Olabi AG. State of the art of biofuels from pure plant oil. Renew Sustain Energy Rev. 2012;16(6):4056–70.CrossRefGoogle Scholar
  5. 5.
    Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–45.CrossRefGoogle Scholar
  6. 6.
    Huang AHC. Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:177–200.CrossRefGoogle Scholar
  7. 7.
    Murphy DJ. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res. 1993;32(3):247–80.CrossRefGoogle Scholar
  8. 8.
    Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 1993;101(1):267–76.CrossRefGoogle Scholar
  9. 9.
    Huang AHC. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996;110(4):1055–61.CrossRefGoogle Scholar
  10. 10.
    Murphy DJ, Hernandez-Pinzon I, Patel K. Role of lipid bodies and lipid-body proteins in seeds and other tissues. J Plant Physiol. 2001;158(4):471–8.CrossRefGoogle Scholar
  11. 11.
    Hsieh K, Huang AHC. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol. 2004;136(3):3427–34.CrossRefGoogle Scholar
  12. 12.
    Odonnell DJ, Ackerman JJH, Maciel GE. Comparative-study of whole seed protein and starch content via cross polarization magic angle spinning C-13 nuclear magnetic-resonance spectroscopy. J Agric Food Chem. 1981;29(3):514–8.CrossRefGoogle Scholar
  13. 13.
    Bardet M, Foray MF, Bourguignon J, Krajewski P. Investigation of seeds with high-resolution solid-state C-13 NMR. Magn Reson Chem. 2001;39(12):733–8.CrossRefGoogle Scholar
  14. 14.
    Brown SP, Spiess HW. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev. 2001;101(12):4125–55.CrossRefGoogle Scholar
  15. 15.
    Brown SP. Applications of high-resolution H-1 solid-state NMR. Solid State Nucl Magn Reson. 2012;41:1–27.CrossRefGoogle Scholar
  16. 16.
    Polenova T, Gupta R, Goldbourt A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem. 2015;87(11):5458–69.CrossRefGoogle Scholar
  17. 17.
    Footitt S, Vargas D, Cohn MA. Seed dormancy in red rice. A C-13 NMR study of the metabolim of dormancy -breaking chemicals. Physiol Plant. 1995;94(4):667–71.CrossRefGoogle Scholar
  18. 18.
    Grimmer AR, Kretschmer A, Cajipe VB. Influence of magic angle spinning on sample temperature. Magn Reson Chem. 1997;35(2):86–90.CrossRefGoogle Scholar
  19. 19.
    Rutar V. Magic angle sample spinning NMR-spectroscopy of liquids as a nondestructive method of plant seeds. J Agric Food Chem. 1989;37(1):67–70.CrossRefGoogle Scholar
  20. 20.
    Hutton WC, Garbow JR, Hayes TR. Nondestructive NMR determination of oil composition in transformed Canola seeds. Lipids. 1999;34(12):1339–46.CrossRefGoogle Scholar
  21. 21.
    Bardet M, Foray MF. Discrimination of C-13 NMR signals in solid material with liquid-like behavior presenting residual dipolar proton-proton homonuclear interactions: application on seeds. J Magn Reson. 2003;160(2):157–60.CrossRefGoogle Scholar
  22. 22.
    Bardet M, Maron S, Foray MF, Berger M, Guillermo A. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state C-13 NMR. Radiat Res. 2004;161(4):458–63.CrossRefGoogle Scholar
  23. 23.
    Sayer BG, Preston CM. A carbon-13 magic angle spinning nuclear magnetic resonance study of the germination of conifer seeds. Seed Sci Technol. 1996;24(2):321–9.Google Scholar
  24. 24.
    Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR, Kermode AR. In vivo C-13 NMR metabolite profiling: potential for understanding and assessing conifer seed quality. J Exp Bot. 2005;56(418):2253–65.CrossRefGoogle Scholar
  25. 25.
    Doddrell DM, Pegg DT, Bendall MR. Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson. 1982;48(2):323–7.Google Scholar
  26. 26.
    Bardet M, Gagnaire D, Nardin R, Robert D, Vincendon M. Use of C-13 enriched wood for structural NMR investigation of wood and wood components, cellulose and lignin, in solid and in solution. Holzforschung. 1986;40:17–24.Google Scholar
  27. 27.
    Sacchi R, Addeo F, Paolillo L. 1H and 13C NMR of virgin olive oil. An overview. Magn Reson Chem. 1997;35:S133–45.CrossRefGoogle Scholar
  28. 28.
    de Oliveira CMR, Iacomini M, Alquini Y, Gorin PAJ. Microscopic and NMR analysis of the external coat from seeds of Magonia pubescens. New Phytol. 2001;152(3):501–9.CrossRefGoogle Scholar
  29. 29.
    Stejskal EO, Tanner JE. Spin diffusion measurements – spin echoes in presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.CrossRefGoogle Scholar
  30. 30.
    Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by pulsed-gradient spin-echo method. J Chem Phys. 1968;49(4):1768–77.CrossRefGoogle Scholar
  31. 31.
    Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion.1. Basic theory. Concepts Magn Reson. 1997;9(5):299–336.CrossRefGoogle Scholar
  32. 32.
    Price WS. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Exp Aspects Concepts Magn Reson. 1998;10(4):197–237.CrossRefGoogle Scholar
  33. 33.
    Callaghan PT. Principles of nuclear magnetic resonance miscroscopy, 2003 ed. Oxford: Oxford University Press; 1991.Google Scholar
  34. 34.
    Fleischer G, Skirda VD, Werner A. NMR-investigation of restricted self-diffusion of oil in rape seeds. Eur Biophys J. 1990;19(1):25–30.CrossRefGoogle Scholar
  35. 35.
    Zakhartchenko NL, Skirda VD, Valiullin RR. Self-diffusion of water and oil in peanuts investigated by PFG NMR. Magn Reson Imaging. 1998;16(5–6):583–6.CrossRefGoogle Scholar
  36. 36.
    Carlton KJ, Halse MR, Maphossa AM, Mallett MJD. NMR stray-field analysis of oil drop size distribution in peanut cotyledons. Eur Biophys J. 2001;29(8):574–8.CrossRefGoogle Scholar
  37. 37.
    Guillermo A, Bardet M. In situ pulsed-field gradient NMR determination of the size of oil bodies in vegetable seeds. Analysis of the effect of the gradient pulse length. Anal Chem. 2007;79(17):6718–26.CrossRefGoogle Scholar
  38. 38.
    Lahrech H, Zoula S, Farion R, Remy C, Decorps M. In vivo measurement of the size of lipid droplets in an intracerebral glioma in the rat. Magn Reson Med. 2001;45(3):409–14.CrossRefGoogle Scholar
  39. 39.
    Cotts RM, Hoch MJR, Sun T, Markert JT. Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems. J Magn Reson. 1989;83(2):252–66.Google Scholar
  40. 40.
    Fordham EJ, Gibbs SJ, Hall LD. Partially restricted diffusion in a permeable sandstone – observations by stimulated echo PFG NMR. Magn Reson Imaging. 1994;12(2):279–84.CrossRefGoogle Scholar
  41. 41.
    Wu DH, Chen AD, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A. 1995;115(2):260–4.CrossRefGoogle Scholar
  42. 42.
    Gromova M, Guillermo A, Bayle P-A, Bardet M. In vivo measurement of the size of oil bodies in plant seeds using a simple and robust pulsed field gradient NMR method. Eur Biophys J Biophys Lett. 2015;44(3):121–9.CrossRefGoogle Scholar
  43. 43.
    Mantese AI, Medan D, Hall AJ. Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity. Ann Bot. 2006;97(6):999–1010.CrossRefGoogle Scholar
  44. 44.
    Fu Y-B, Ahmed Z, Diederichsen A. Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv Physiol. 2015;3:1–16.CrossRefGoogle Scholar
  45. 45.
    Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016;243:1–9.CrossRefGoogle Scholar
  46. 46.
    Muller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schroder HC, Reiber A, et al. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol. 2006;153(1):31–41.CrossRefGoogle Scholar
  47. 47.
    Chudek JA, Hunter G. Magnetic resonance imaging of plants. Prog Nucl Magn Reson Spectrosc. 1997;31:43–62.CrossRefGoogle Scholar
  48. 48.
    Borisjuk L, Rolletschek H, Neuberger T. Nuclear magnetic resonance imaging of lipid in living plants. Prog Lipid Res. 2013;52(4):465–87.CrossRefGoogle Scholar
  49. 49.
    Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, et al. A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed. Plant Physiol. 2013;161(2):583–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marina Gromova
    • 1
    • 2
  • Armel Guillermo
    • 3
    • 4
    • 5
  • Pierre-Alain Bayle
    • 1
    • 2
  • Michel Bardet
    • 1
    • 2
  1. 1.INAC-MEM, LRMUniv. Grenoble AlpesGrenobleFrance
  2. 2.CEAINAC, MEM, LRMGrenobleFrance
  3. 3.INAC-SPrAMUniv. Grenoble AlpesGrenobleFrance
  4. 4.INAC-SPrAMCNRSGrenobleFrance
  5. 5.INAC-SPrAMCEAGrenobleFrance

Personalised recommendations