Intact Food Analysis by Means of HRMAS-NMR Spectroscopy

  • P. Mazzei
  • A. Piccolo
  • M. Valentini
Reference work entry


High-resolution magic-angle spinning (HRMAS) is a fairly recently developed technique in NMR spectroscopy, whose main feature is to allow the significant reduction of anisotropy in semisolid materials and obtain high-resolution NMR spectra, when a rotor containing the material is placed at the magic angle to the magnetic field and spun at high frequency. The technique thus offers the opportunity to evaluate the molecular composition of biological tissue without any extraction or pretreatment. While HRMAS is already widely applied in biomedicine, its application in food chemistry is only at the initial stage. This review reports the most recent advances on the application of HRMAS techniques to agrofood products, such as cereals, fruits, vegetables, dairy products, and fish and meat. The HRMAS potential to assess the quality and the geographical origin is enhanced when the carefully selected NMR signals data are elaborated by multivariate analysis techniques. The combination of HRMAS results with multivariate statistics was proven to provide a robust response to the producer and consumer requirements for the assessment of food quality and security, thereby indicating that HRMAS will certainly become an increasingly selected technique in food chemistry.


Noninvasiveness Metabolic pattern Metabolomics Geographical origin Food quality PLS-DA Sharp peaks Cereals Meat Fruits Vegetables Dairy products 


  1. 1.
    Levitt M. Spin dynamics: basics of nuclear magnetic resonance. Chichester: Wiley; 2008.Google Scholar
  2. 2.
    Mazzei P, Piccolo A. Interactions between natural organic matter and organic pollutants as revealed by NMR spectroscopy. Magn Reson Chem. 2015;53(9):667–78.CrossRefGoogle Scholar
  3. 3.
    Jacobsen NE. NMR spectroscopy explained – simplified theory, applications and examples for organic chemistry and structural biology. Hoboken: Wiley; 2007.Google Scholar
  4. 4.
    Valentini M, Ritota M, Cafiero C, Cozzolino S, Leita L, Sequi P. The HRMAS-NMR tool in foodstuff characterisation. Magn Reson Chem. 2011;49:S121–S5.CrossRefGoogle Scholar
  5. 5.
    Maas WE, Laukien FH, Cory DG. Gradient, high resolution, magic angle sample spinning NMR. J Am Chem Soc. 1996;118(51):13085–6.CrossRefGoogle Scholar
  6. 6.
    Renault M, Shintu L, Piotto M, Caldarelli S. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep. 2013;3:3349.CrossRefGoogle Scholar
  7. 7.
    Doty FD, Entzminger G, Yang YA. Magnetism in high-resolution NMR probe design. I: general methods. Concepts Magn Reson. 1998;10(3):133–56.CrossRefGoogle Scholar
  8. 8.
    Doty FD, Entzminger G, Yang YA. Magnetism in high-resolution NMR probe design. II: HR MAS. Concepts Magn Reson. 1998;10(4):239–60.CrossRefGoogle Scholar
  9. 9.
    Beckonert O, Coen M, Keun HC, Wang YL, Ebbels TMD, Holmes E, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–32.CrossRefGoogle Scholar
  10. 10.
    Courtier-Murias D, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, et al. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magn Reson. 2012;217:61–76.CrossRefGoogle Scholar
  11. 11.
    Mazzei P, Piccolo A, Nugnes L, Mascolo M, De Rosa G, Staibano S. Metabolic profile of intact tissue from uterine leiomyomas using high-resolution magic-angle-spinning H-1 NMR spectroscopy. NMR Biomed. 2010;23(10):1137–45.CrossRefGoogle Scholar
  12. 12.
    Mazzei P, Vinale F, Woo SL, Pascale A, Lorito M, Piccolo A. Metabolomics by proton high -resolution magic-angle-spinning nuclear magnetic resonance of tomato plants treated with two secondary metabolites isolated from Trichoderma. J Agric Food Chem. 2016;64(18):3538–45.CrossRefGoogle Scholar
  13. 13.
    Santoro M, Marchetti P, Rossi F, Perale G, Castiglione F, Mele A, et al. Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. J Phys Chem B. 2011;115(11):2503–10.CrossRefGoogle Scholar
  14. 14.
    Paban V, Manrique C, Filali M, Maunoir-Regimbal S, Fauvelle F, Alescio-Lautier B. Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology. 2014;76:68–79.CrossRefGoogle Scholar
  15. 15.
    Righi V, Schenetti V, Mucci A. Colombini MP, Tassi L, editors. A New NMR technique: HR-MAS applied to animal and vegetable soft materials. Trivandrum: Transworld Research World; 2008.Google Scholar
  16. 16.
    Gil AM, Duarte IF. High-resolution magic angle spinning NMR spectroscopy of frutis and vegetables. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer; 2008. p. 1765–8.Google Scholar
  17. 17.
    Santos ADC, Fonseca FA, Liao LM, Alcantara GB, Barison A. High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. Trends Anal Chem. 2015;73:10–8.CrossRefGoogle Scholar
  18. 18.
    Corsaro C, Cicero N, Mallamace D, Vasi S, Naccari C, Salvo A, et al. HR-MAS and NMR towards foodomics. Food Res Int. 2016;89:1085–94.CrossRefGoogle Scholar
  19. 19.
    Cifuentes A. Food analysis and foodomics foreword. J Chromatogr A. 2009;1216(43):7109.CrossRefGoogle Scholar
  20. 20.
    Mazzei P, Piccolo A. HRMAS NMR spectroscopy applications in agriculture. Chem Biol Technol Agric. 2017;4(11):1–13.Google Scholar
  21. 21.
    Brescia MA, Jambrenghi AC, di Martino V, Sacco D, Giannico F, Vonghia G, et al. High resolution nuclear magnetic resonance spectroscopy (NMR) studies on meat components: potentialities and prospects. Ital J Anim Sci. 2002;1(2):151–8.CrossRefGoogle Scholar
  22. 22.
    Sacco D, Brescia MA, Buccolieri A, Jambrenghi AC. Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations. Meat Sci. 2005;71(3):542–8.CrossRefGoogle Scholar
  23. 23.
    Shintu L, Caldarelli S, Franke BM. Pre-selection of potential molecular markers for the geographic origin of dried beef by HR-MAS NMR spectroscopy. Meat Sci. 2007;76(4):700–7.CrossRefGoogle Scholar
  24. 24.
    Ritota M, Casciani L, Failla S, Valentini M. HRMAS-NMR spectroscopy and multivariate analysis meat characterisation. Meat Sci. 2012;92(4):754–61.CrossRefGoogle Scholar
  25. 25.
    Longobardi F, Sacco D, Casiello G, Ventrella A, Contessa A, Sacco A. Garganica kid goat meat: physico-chemical characterization and nutritional impacts. J Food Compos Anal. 2012;28(2):107–13.CrossRefGoogle Scholar
  26. 26.
    Castejon D, Garcia-Segura JM, Escudero R, Herrera A, Cambero MI. Metabolomics of meat exudate: its potential to evaluate beef meat conservation and aging. Anal Chim Acta. 2015;901:1–11.CrossRefGoogle Scholar
  27. 27.
    Sundekilde UK, Rasmussen MK, Young JF, Bertram HC. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine. Food Chem. 2017;217:151–4.CrossRefGoogle Scholar
  28. 28.
    Nestor G, Bankefors J, Schlechtriem C, Brannas E, Pickova J, Sandstrom C. High-resolution H-1 magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA. J Agric Food Chem. 2010;58(20):10799–803.CrossRefGoogle Scholar
  29. 29.
    Bankefors J, Kaszowska M, Schlechtriem C, Pickova J, Brannas E, Edebo L, et al. A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic salmon (Salmo salar L.) – application to a short feeding study. Food Chem. 2011;129(4):1397–405.CrossRefGoogle Scholar
  30. 30.
    Hanana H, Simon G, Kervarec N, Mohammadou BA, Cerantola S. HRMAS NMR as a tool to study metabolic responses in heart clam Ruditapes decussatus exposed to Roundup (R). Talanta. 2012;97:425–31.CrossRefGoogle Scholar
  31. 31.
    Mazzei P, Piccolo A. Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy. Environ Sci Technol. 2012;46(11):5939–46.CrossRefGoogle Scholar
  32. 32.
    Villa P, Castejon D, Herraiz M, Herrera A. H-1-HRMAS NMR study of cold smoked Atlantic salmon (Salmo salar) treated with E-beam. Magn Reson Chem. 2013;51(6):350–7.CrossRefGoogle Scholar
  33. 33.
    Cai HH, Chen YS, Cui XH, Cai SH, Chen Z. High-resolution H-1 NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence. PLoS One. 2014;9(1):e86422.CrossRefGoogle Scholar
  34. 34.
    Gopinath T, Kumar A. Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms. J Magn Reson. 2006;183(2):259–68.CrossRefGoogle Scholar
  35. 35.
    Heude C, Lemasson E, Elbayed K, Piotto M. Rapid assessment of fish freshness and quality by H-1 HR-MAS NMR spectroscopy. Food Anal Methods. 2015;8(4):907–15.CrossRefGoogle Scholar
  36. 36.
    Sacco A, Bolsi IN, Massini R, Spraul M, Humpfer E, Ghelli S. Preliminary investigation on the characterization of durum wheat flours coming from some areas of south Italy by means of H-1 high-resolution magic angle spinning nuclear magnetic resonance. J Agric Food Chem. 1998;46(10):4242–9.CrossRefGoogle Scholar
  37. 37.
    Brescia MA, Di Martino G, Fares C, Di Fonzo N, Platani C, Ghelli S, et al. Characterization of Italian durum wheat semolina by means of chemical analytical and spectroscopic determinations. Cereal Chem. 2002;79(2):238–42.CrossRefGoogle Scholar
  38. 38.
    Brescia MA, Sgaramella A, Ghelli S, Sacco A. H-1 HR-MAS NMR and isotopic investigation of bread and flour samples produced in southern Italy. J Sci Food Agric. 2003;83(14):1463–8.CrossRefGoogle Scholar
  39. 39.
    Brescia MA, Sacco D, Sgaramella A, Pasqualone A, Simeone R, Peri G, et al. Characterisation of different typical Italian breads by means of traditional, spectroscopic and image analyses. Food Chem. 2007;104(1):429–38.CrossRefGoogle Scholar
  40. 40.
    Larsen FH, Blennow A, Engelsen SB. Starch granule hydration – A MAS NMR investigation. Food Biophys. 2008;3(1):25–32.CrossRefGoogle Scholar
  41. 41.
    Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, et al. NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. J Agron Crop Sci. 2009;195(2):77–88.CrossRefGoogle Scholar
  42. 42.
    Shintu L, Ziarelli F, Caldarelli S. Is high-resolution magic angle spinning NMR a practical speciation tool for cheese samples? Parmigiano Reggiano as a case study. Magn Reson Chem. 2004;42(4):396–401.CrossRefGoogle Scholar
  43. 43.
    Shintu L, Caldarelli S. High-resolution MAS NMR and chemometrics: characterization of the ripening of Parmigiano Reggiano cheese. J Agric Food Chem. 2005;53(10):4026–31.CrossRefGoogle Scholar
  44. 44.
    Shintu L, Caldarelli S. Toward the determination of the geographical origin of emmental(er) cheese via high resolution MAS NMR: a preliminary investigation. J Agric Food Chem. 2006;54(12):4148–54.CrossRefGoogle Scholar
  45. 45.
    Mazzei P, Piccolo A. H-1 HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012;132(3):1620–7.CrossRefGoogle Scholar
  46. 46.
    Bergenholtz AS, Wessman P, Wuttke A, Hakansson S. A case study on stress preconditioning of a Lactobacillus strain prior to freeze-drying. Cryobiology. 2012;64(3):152–9.CrossRefGoogle Scholar
  47. 47.
    Corsaro C, Mallamace D, Vasi S, Ferrantelli V, Dugo G, Cicero N. H-1 HR-MAS NMR spectroscopy and the metabolite determination of typical foods in mediterranean diet. J Anal Methods Chem. 2015;2015:1–14.CrossRefGoogle Scholar
  48. 48.
    Deshmukh AP, Simpson AJ, Hatcher PG. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry. 2003;64(6):1163–70.CrossRefGoogle Scholar
  49. 49.
    Fang XH, Qiu F, Yan B, Wang H, Mort AJ, Stark RE. NMR studies of molecular structure in fruit cuticle polyesters. Phytochemistry. 2001;57(6):1035–42.CrossRefGoogle Scholar
  50. 50.
    Miglietta ML, Lamanna R. H-1 HR-MAS NMR of carotenoids in aqueous samples and raw vegetables. Magn Reson Chem. 2006;44(7):675–85.CrossRefGoogle Scholar
  51. 51.
    Perez EMS, Iglesias MJ, Ortiz FL, Perez IS, Galera MM. Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: application to tissue differentiation and fruit ripening. Food Chem. 2010;122(3):877–87.CrossRefGoogle Scholar
  52. 52.
    Savorani F, Capozzi F, Engelsen SB, Dell’Abate MT, Sequi P. Pomodoro Di Pachino: an authentication study using 1H–NMR and chemometrics – protecting its P.G.I. European certification. In: Guojonsdottir M, Belton P, Webb G, editors. Magnetic resonance in food science: challenges in a changing world. Cambridge, UK: The Royal Society of Chemistry; 2009. p. 158–66.Google Scholar
  53. 53.
    Mallamace D, Corsaro C, Salvo A, Cicero N, Macaluso A, Giangrosso G, et al. A multivariate statistical analysis coming from the NMR metabolic profile of cherry tomatoes (The Sicilian Pachino case). Physica A. 2014;401:112–7.CrossRefGoogle Scholar
  54. 54.
    Ritota M, Casciani L, Valentini M. PGI chicory (Cichorium intybus L.) traceability by means of HRMAS-NMR spectroscopy: a preliminary study. J Sci Food Agric. 2013;93(7):1665–72.CrossRefGoogle Scholar
  55. 55.
    Cicero N, Corsaro C, Salvo A, Vasi S, Giofre SV, Ferrantelli V, et al. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina. Nat Prod Res. 2015;29(20):1894–902.CrossRefGoogle Scholar
  56. 56.
    Ritota M, Casciani L, Han BZ, Cozzolino S, Leita L, Sequi P, et al. Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chem. 2012;135(2):684–93.CrossRefGoogle Scholar
  57. 57.
    Ritota M, Marini F, Sequi P, Valentini M. Metabolomic characterization of Italian sweet pepper (Capsicum annum L.) by means of HRMAS-NMR spectroscopy and multivariate analysis. J Agric Food Chem. 2010;58(17):9675–84.CrossRefGoogle Scholar
  58. 58.
    Rosati A, Cafiero C, Paoletti A, Alfei B, Caporali S, Casciani L, et al. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem. 2014;159:236–43.CrossRefGoogle Scholar
  59. 59.
    Pacifico D, Casciani L, Ritota M, Mandolino G, Onofri C, Moschella A, et al. NMR-based metabolomics for organic farming traceability of early potatoes. J Agric Food Chem. 2013;61(46):11201–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Interdipartimentale per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU)Università di Napoli Federico IIPorticiItaly
  2. 2.CREA – Research Centre for Food and NutritionRomeItaly
  3. 3.Department of ChemistrySultan Qaboos UniversityAl-Khoud, MuscatSultanate of Oman

Personalised recommendations