Skip to main content

Food Analysis Using Fast Steady-State Free Precession TD-NMR Relaxometric Methods

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

The importance of NMR relaxometry in food analysis has been growing at a fast pace in recent years. Most food-related applications rely upon the transverse relaxation time (T2) that can be measured with a single-shot method using the Carr-Purcell-Meiboom-Gill pulse sequence. On the other hand, the longitudinal relaxation time (T1) has been seldom used due to the long measurement time of classical methods (e.g., inversion recovery, saturation recovery, and other pulse sequences). To by-pass the long acquisition time, several single-shot, steady-state methods have been proposed to measure T1, T2, and T1/T2 ratio. This chapter presents and discusses the advantages and disadvantages of rapid, single-shot continuous wave free precession (CWFP) pulse sequences in the measurement of T1 and T2 through single experiments; a single-shot CWFP method to measure T1 in spectrometers with long dead time; a fast method to measure the T1/T2 ratio in grossly inhomogeneous magnetic field (Split 180), and a fast 2D method based on driven-equilibrium Carr-Purcell-Meiboom-Gill (DECPMG) sequences to obtain T1/T2 maps. Examples of application of these sequences for monitoring food quality are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Annu Rep NMR Spectrosc. 2010;69:145–97.

    Article  CAS  Google Scholar 

  2. Colnago LA, Andrade FD, Souza AA, Azeredo RBV, Lima AA, Cerioni LM, et al. Why is inline NMR rarely used as industrial sensor? challenges and opportunities. Chem Eng Technol. 2014;37:191–203.

    Article  CAS  Google Scholar 

  3. Colnago LA, Azeredo RBV, Marchi Netto A, Andrade FD, Venâncio T. Rapid analyses of oil and fat content in agri-food products using continuous wave free precession time domain NMR. Magn Reson Chem. 2011;49:113–20.

    Article  CAS  Google Scholar 

  4. Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.

    Article  CAS  Google Scholar 

  5. Andrade FD, Netto AM, Colnago LA. Qualitative analysis by online nuclear magnetic resonance using Carr-Purcell-Meiboom-Gill sequence with low refocusing flip angles. Talanta. 2011;84:84–8.

    Article  CAS  Google Scholar 

  6. Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60:52–70.

    Article  CAS  Google Scholar 

  7. Azeredo RBV, Colnago LA, Engelsberg M. Quantitative analysis using steady-state free precession nuclear magnetic resonance. Anal Chem. 2000;72:2401–5.

    Article  CAS  Google Scholar 

  8. Azeredo RBV, Colnago LA, Souza AA, Engelsberg M. Continuous wave free precession practical analytical tool for low-resolution nuclear magnetic resonance measurements. Anal Chim Acta. 2003;478:313–20.

    Article  CAS  Google Scholar 

  9. Colnago LA, Moraes TB, Monaretto T, Andrade FD. Rapid determination of food quality using steady state free precession sequence in TD-NMR spectroscopy. In: Capozzi F, Laghi L, Belton PS, editors. Magnetic resonance in food science: defining food by magnetic resonance. Cambridge; 2015. Royal society of Chemistry, p. 1–18.

    Google Scholar 

  10. Monaretto T, Diuk F, Moraes TB, Alves A, Ribeiro E, Alberto L. On resonance phase alternated CWFP sequences for rapid and simultaneous measurement of relaxation times. J Magn Reson. 2015;259:174–8.

    Article  CAS  Google Scholar 

  11. Moraes TB, Monaretto T, Colnago LA. Rapid and simple determination of T1 relaxation times in time-domain NMR by continuous wave free precession sequence. J Magn Reson. 2016;270:1–6.

    Article  CAS  Google Scholar 

  12. Freed D, Scheven U, Hürlimann M. Split 180 sequences. Diffus Fundam. 2009;10:2–4.

    Google Scholar 

  13. Mitchell J, Hürlimann MD, Fordham EJ. A rapid measurement of T1/T2: the DECPMG sequence. J Magn Reson. 2009;200:198–206.

    Article  CAS  Google Scholar 

  14. Carr HY. Steady-state free precession in nuclear magnetic resonance. Phys Rev. 1958;112:1693–701.

    Article  CAS  Google Scholar 

  15. Nunes LMS, Moraes TB, Barbosa LL, Mazo LH, Colnago LA. Monitoring electrochemical reactions in situ using steady-state free precession 13C NMR spectroscopy. Anal Chim Acta. 2014;850:1–5.

    Article  CAS  Google Scholar 

  16. Santos PM, De Souza AA, Colnago LA. Supressão das anomalias de fase e batimentos laterais em espectros de rmn 13c obtidos com a sequência de precessão livre no estado estacionário. Quim Nova. 2010;33:954–6.

    Article  Google Scholar 

  17. Moraes TB, Santos PM, Magon CJ, Colnago LA. Suppression of spectral anomalies in SSFP-NMR signal by the Krylov basis diagonalization method. J Magn Reson. 2014;243:74–80.

    Article  CAS  Google Scholar 

  18. Santos PM, Souza AA, Colnago LA. Fast acquisition of 13C NMR spectra using the steady-state free precession sequence. Appl Magn Reson. 2011;40:331–8.

    Article  CAS  Google Scholar 

  19. Duarte CJ, Colnago LA, de Vasconcellos Azeredo RB, Venâncio T. Solvent suppression in high-resolution 1H NMR spectroscopy using conventional and phase alternated continuous wave free precession. Appl Magn Reson. 2013;44:1265–80.

    Article  CAS  Google Scholar 

  20. De Andrade FD, Marchi Netto A, Colnago LA. Use of Carr-Purcell pulse sequence with low refocusing flip angle to measure T1 and T2 in a single experiment. J Magn Reson. 2012;214:184–8.

    Article  CAS  Google Scholar 

  21. Venâncio T, Engelsberg M, Azeredo RBV, Colnago LA. Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study. J Magn Reson. 2006;181:29–34.

    Article  CAS  Google Scholar 

  22. Colnago LA, Engelsberg M, Souza AA, Barbosa LL. High-throughput, non-destructive determination of oil content in intact seeds by continuous wave-free precession NMR. Anal Chem. 2007;79:1271–4.

    Article  CAS  Google Scholar 

  23. Venâncio T, Engelsberg M, Azeredo RBV, Alem NER, Colnago LA. Fast and simultaneous measurement of longitudinal and transverse NMR relaxation times in a single continuous wave free precession experiment. J Magn Reson. 2005;173:34–9.

    Article  CAS  Google Scholar 

  24. Kronenbitter J, Schwenk A. A new technique for measuring the relaxation times T1 and T2 and the equilibrium magnetization M0 of slowly relaxing systems with weak NMR signals. J Magn Reson. 1977;25:147–65.

    CAS  Google Scholar 

  25. Schwenk A. NMR pulse technique with high sensitivity for slowly relaxing systems. J Magn Reson. 1971;5:376–89.

    CAS  Google Scholar 

  26. Vold RL, Waugh JS, Klein MP, Phelps DE. Measurement of spin relaxation in complex systems. J Chem Phys. 1968;48:3831–2.

    Article  CAS  Google Scholar 

  27. Venâncio T, Colnago LA. Simultaneous measurements of T1 and T2 during fast polymerization reaction using continuous wave-free precession NMR method. Magn Reson Chem. 2012;50:534–8.

    Article  CAS  Google Scholar 

  28. Kock FV, Colnago LA. Rapid and simultaneous relaxometric methods to study paramagnetic ions complexes in solution: an alternative to spectrophotometry. Microchem J. 2015;122:144–8.

    Article  CAS  Google Scholar 

  29. Corrêa CC, Forato LA, Colnago LA. High-throughput non-destructive nuclear magnetic resonance method to measure intramuscular fat content in beef. Anal Bioanal Chem. 2009;393:1357–60.

    Article  CAS  Google Scholar 

  30. Santos PM, Corrêa CC, Forato LA, Tullio RR, Cruz GM, Colnago LA. A fast and non-destructive method to discriminate beef samples using TD-NMR. Food Control. 2014;38:204–8.

    Article  CAS  Google Scholar 

  31. Pereira FMV, Bertelli Pflanzer S, Gomig T, Lugnani Gomes C, De Felício PE, Alberto Colnago L. Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics. Talanta. 2013;108:88–91.

    Article  CAS  Google Scholar 

  32. Kock FVC, Colnago LA. Rapid method for monitoring chitosan coagulation using low-field NMR relaxometry. Carbohydr Polym. 2016;150:1–4.

    Article  CAS  Google Scholar 

  33. Hürlimann MD, Burcaw L, Song YQ. Quantitative characterization of food products by two-dimensional D-T 2 and T1–T2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297:303–11.

    Article  CAS  Google Scholar 

  34. Deng F, Xiao L, Liao G, Zong F, Chen W. A new approach of two-dimensional NMR relaxation measurement in flowing fluid. Appl Magn Reson. 2014;45:179–92.

    Article  Google Scholar 

  35. Deng F, Xiao L, Chen W, Liu H, Liao G, Wang M, et al. Rapid determination of fluid viscosity using low-field two-dimensional NMR. J Magn Reson. 2014;247:1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto Colnago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Colnago, L.A., Moraes, T.B., Monaretto, T. (2018). Food Analysis Using Fast Steady-State Free Precession TD-NMR Relaxometric Methods. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_15

Download citation

Publish with us

Policies and ethics