Solid-State 2H NMR Studies of Water-Mediated Lipid Membrane Deformation

  • Trivikram R. Molugu
  • Xiaolin Xu
  • Soohyun Lee
  • K. J. Mallikarjunaiah
  • Michael F. Brown
Reference work entry


The application of solid-state 2H nuclear magnetic resonance (NMR) spectroscopy gives a powerful approach for investigating hydration-mediated effects on lipid bilayer structure and dynamics. The extent to which lipid bilayers are deformed by dehydration stress is inherent to understanding how lipid-protein interactions affect biomembrane functioning. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Structural quantities, such as the area per lipid and volumetric bilayer thickness, are obtained by a mean-torque analysis of 2H NMR order parameters. Removal of water in the liquid-crystalline state gives a reduction of the mean area per lipid, together with a corresponding increase in volumetric bilayer thickness. Measurements of order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Furthermore, solid-state 2H NMR relaxation rates of lipid bilayers at varying hydration levels afford new insights into the role of water in membrane structural dynamics and viscoelastic properties. Model-free interpretation of spin-lattice (R1Z) and transverse (\( {R}_2^{\mathrm{QE}} \)) relaxation rates suggests that collective chain motions described as order-director fluctuations dominantly contribute to the relaxation. In a continuum picture, elastic deformations in such materials are collective hydrodynamic phenomena with motional time scales spanning many decades (picoseconds to seconds). The dynamic processes mainly affecting the spin‐spin relaxation have characteristic time scales much longer than those contributing to spin‐lattice relaxation. Such studies probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions, giving a unique source of information about intermolecular forces pertinent to biomembrane structure and function.


Lipid bilayers Liquid crystals Membranes deformation Membrane elasticity Molecular dynamics NMR relaxation NMR spectroscopy Order-director fluctuations Osmotic stress 


  1. 1.
    McIntosh TJ. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phophatidylethanolamine. Chem Phys Lipids. 1996;81:117–31.CrossRefGoogle Scholar
  2. 2.
    Tarahovsky YS, Arsenault AL, MacDonald RC, McIntosh TJ, Epand RM. Electrostatic control of phospholipid polymorphism. Biophys J. 2000;79:3193–200.CrossRefGoogle Scholar
  3. 3.
    Lewis RNAH, McElhaney RN. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochim Biophys Acta. 2013;1828:2347–58.CrossRefGoogle Scholar
  4. 4.
    Brown MF. Membrane structure and dynamics studied with NMR spectroscopy. In: Merz KM, Roux B, editors. Biological membranes: a molecular perspective from computation and experiment. Basel: Birkhäuser; 1996. p. 175–252. CrossRefGoogle Scholar
  5. 5.
    Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. Biochim Biophys Acta. 2011;1808:818–39.CrossRefGoogle Scholar
  6. 6.
    Leftin A, Xu X, Brown MF. Phospholipid bilayer membranes: deuterium and carbon-13 NMR spectroscopy. eMagRes. 2014;3:199–214.CrossRefGoogle Scholar
  7. 7.
    Bärenwald R, Achilles A, Lange F, Ferreira TM, Saalwachter K. Applications of solid-state NMR spectroscopy for the study of lipid membranes with polyphilic guest (macro)molecules. Polymers. 2016;8:439. Scholar
  8. 8.
    Molugu TR, Lee S, Brown MF. Concepts and methods of solid-state NMR spectroscopy applied to biomembranes. Chem Rev. 2017;117:12087–132.CrossRefGoogle Scholar
  9. 9.
    Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–95.CrossRefGoogle Scholar
  10. 10.
    Kučerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J. 2005;88:2626–37.CrossRefGoogle Scholar
  11. 11.
    Tyler AII, Law RV, Seddon JM. X-ray diffraction of lipid model membranes. In: Owen DM, editor. Methods in membrane lipids. New York: Springer; 2015. p. 199–225. Google Scholar
  12. 12.
    Endress E, Heller H, Casalta H, Brown MF, Bayerl TM. Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry. 2002;41:13078–86.CrossRefGoogle Scholar
  13. 13.
    Rheinstädter MC, Ollinger C, Fragneto G, Demmel F, Salditt T. Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett. 2004;93:108107-1–4.Google Scholar
  14. 14.
    Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J. 2008;95:2356–67.CrossRefGoogle Scholar
  15. 15.
    Ollila OHS, Pabst G. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim Biophys Acta. 2016;1858:2512–28.Google Scholar
  16. 16.
    Lee C, Bain CD. Raman spectra of planar supported lipid bilayers. Biochim Biophys Acta. 2005;1711:59–71.CrossRefGoogle Scholar
  17. 17.
    Gruenbaum SM, Skinner JL. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables. J Chem Phys. 2011;135:075101-1–10.CrossRefGoogle Scholar
  18. 18.
    Schultz ZD, Levin IW. Vibrational spectroscopy of biomembranes. Annu Rev Anal Chem. 2011;4:343–66.CrossRefGoogle Scholar
  19. 19.
    Struts AV, Barmasov AV, Brown MF. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy. Opt Spectrosc. 2015;118:711–7.CrossRefGoogle Scholar
  20. 20.
    Brown MF, Chan SI. Bilayer membranes: deuterium and carbon-13 NMR. eMagRes. 2007;1–15.
  21. 21.
    Petrache HI, Dodd SW, Brown MF. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectrscopy. Biophys J. 2000;79:3172–92.CrossRefGoogle Scholar
  22. 22.
    Bartels T, Lankalapally RS, Bittman R, Beyer K, Brown MF. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2008;130:14521–32.CrossRefGoogle Scholar
  23. 23.
    Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes by separated local-field 13C NMR spectroscopy. Biophys J. 2014;107:2274–86.CrossRefGoogle Scholar
  24. 24.
    Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. Biochim Biophys Acta. 2015;1848:246–59.CrossRefGoogle Scholar
  25. 25.
    Brown MF. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys. 1982;77:1576–99.CrossRefGoogle Scholar
  26. 26.
    Brown MF. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. Dipolar relaxation. J Chem Phys. 1984;80:2808–31.CrossRefGoogle Scholar
  27. 27.
    Xu X, Struts AV, Brown MF. Generalized model-free analysis of nuclear spin relaxation experiments. eMagRes. 2014;3:275–86.CrossRefGoogle Scholar
  28. 28.
    Brown MF, Struts AV. Structural dynamics of retinal in rhodopsin activation viewed by solid-state 2H NMR spectroscopy. In: Separovic F, Naito A, editors. Advances in biological solid-state NMR: proteins and membrane-active peptides. Cambridge: The Royal Society of Chemistry; 2014. p. 320–52. CrossRefGoogle Scholar
  29. 29.
    Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids. 2016;199:39–51.CrossRefGoogle Scholar
  30. 30.
    Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977;10:353–418.CrossRefGoogle Scholar
  31. 31.
    Huster D, Arnold K, Gawrisch K. Strength of Ca2+ binding to retinal lipid membranes: consequences for lipid organization. Biophys J. 2000;78:3011–8.CrossRefGoogle Scholar
  32. 32.
    Seelig A, Seelig J. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry. 1974;13:4839–45.CrossRefGoogle Scholar
  33. 33.
    Seelig J, Seelig A. Lipid conformation in model membranes and biological-membranes. Q Rev Biophys. 1980;13:19–61.CrossRefGoogle Scholar
  34. 34.
    Schindler H, Seeling J. Deuterium order parameters in relation to thermodynamic propertics of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry. 1975;14:2283–87.CrossRefGoogle Scholar
  35. 35.
    Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J Am Chem Soc. 1987;109:2600–9.CrossRefGoogle Scholar
  36. 36.
    Nagle JF. Area/lipid of bilayers from NMR. Biophys J. 1993;64:1476–81.CrossRefGoogle Scholar
  37. 37.
    Petrache HI, Salmon A, Brown MF. Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2001;123:12611–22.CrossRefGoogle Scholar
  38. 38.
    Rajamoorthi K, Petrache HI, McIntosh TJ, Brown MF. Packing and viscoelasticity of polyunsaturated ω-3 and ω-6 lipid bilayers as seen by 2H NMR and X-ray diffraction. J Am Chem Soc. 2005;127:1576–88.CrossRefGoogle Scholar
  39. 39.
    Dill KA, Flory PJ. Interphases of chain molecules: monolayers and lipid bilayer membranes. Proc Natl Acad Sci USA. 1980;77:3115–9.CrossRefGoogle Scholar
  40. 40.
    Dill KA, Flory PJ. Molecular organization in micelles and vesicles. Proc Natl Acad Sci USA. 1981;78:676–80.CrossRefGoogle Scholar
  41. 41.
    Brown MF, Ribeiro AA, Williams GD. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci USA. 1983;80:4325–9.CrossRefGoogle Scholar
  42. 42.
    Dahlquist FW, Muchmore DC, Davis JH, Bloom M. Deuterium magnetic resonance studies of the interaction of lipids with membrane proteins. Proc Natl Acad Sci USA. 1977;74:5435–9.CrossRefGoogle Scholar
  43. 43.
    Bienvenue A, Bloom M, Davis JH, Devaux PF. Evidence for protein-associated lipids from deuterium nuclear magnetic resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants. J Biol Chem. 1982;257:3032–8.Google Scholar
  44. 44.
    Brown MF. Curvature forces in membrane lipid-protein interactions. Biochemistry. 2012;51:9782–95.CrossRefGoogle Scholar
  45. 45.
    Nagle JF, Wilkinson DA. Lecithin bilayers. Density measurements and molecular interactions. Biophys J. 1978;23:159–75.CrossRefGoogle Scholar
  46. 46.
    Jansson M, Thurmond RL, Barry JA, Brown MF, Deuterium NMR study of intermolecular interactions in lamellar phases containing palmitoyllysophosphatidylcholine. J Phys Chem. 1992;96:9532–44.CrossRefGoogle Scholar
  47. 47.
    Petrache HI, Feller SE, Nagle JF. Determination of component volumes of lipid bilayers from simulations. Biophys J. 1997;70:2237–42.CrossRefGoogle Scholar
  48. 48.
    Wennerström H, Lindman B, Engstrom S, Söderman O, Lindblom G, Tiddy GJT. Ion binding in amphiphile water systems. A comparison between electrostatic theories and NMR experiments. In: Fraissard JP, Resing HA, editors. Magnetic resonance in colloid and interface science. Dordrecht: D. Reidel Publishing Company; 1980. p. 609–614.Google Scholar
  49. 49.
    Rand RP, Parsegian VA. Hydration forces between phospholipid bilayers. Biochim Biophys Acta. 1989;988:351–76.CrossRefGoogle Scholar
  50. 50.
    Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions. Nature. 1996;379:219–25.CrossRefGoogle Scholar
  51. 51.
    Rand RP. The lipid-water interface: revelations by osmotic stress. Int Rev Cytol. 2002;215:33–48.CrossRefGoogle Scholar
  52. 52.
    Simon SA, Advanti S, McIntosh TJ. Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers. Biophys J. 1995;69:1473–83.CrossRefGoogle Scholar
  53. 53.
    Cohen JA, Podgornik R, Hansen PL, Parsegian VA. A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents. J Phys Chem B. 2009;113:3709–14.CrossRefGoogle Scholar
  54. 54.
    Parsegian VA, Rand RP, Fuller NL, Rau DC. Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 1986;127:400–16.CrossRefGoogle Scholar
  55. 55.
    Parsegian VA, Rand RP, Rau DC. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 1995;259:43–94.CrossRefGoogle Scholar
  56. 56.
    Parsegian VA, Fuller N, Rand PR. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci USA. 1979;76:2750–9.CrossRefGoogle Scholar
  57. 57.
    Rand PR, Reese TS, Miller RG. Phospholipid bilayer deformations associated with interbilayer contact and fusion. Nature. 1981;293:237–8.CrossRefGoogle Scholar
  58. 58.
    Davies JT, Rideal EK. Interfacial phenomena. New York: Academic Press; 1961.Google Scholar
  59. 59.
    McIntosh TJ, Magid AD, Simon SA. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987;26:7325–32.CrossRefGoogle Scholar
  60. 60.
    Nagle JF, Wiener MC. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988;942:1–10.CrossRefGoogle Scholar
  61. 61.
    Nagle JF, Zhang R, Tristram-Nagle S, Sun W, Petrache HI, Suter RM. X-ray structure determination of fully hydrated Lα phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996;70:1419–31.CrossRefGoogle Scholar
  62. 62.
    Petrache HI, Tristram-Nagle S, Nagle JF. Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids. 1998;95:83–94.CrossRefGoogle Scholar
  63. 63.
    Mallikarjunaiah KJ, Leftin A, Kinnun JJ, Justice MJ, Rogozea AL, Petrache HI, Brown MF. Solid-state 2H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J. 2011;100:98–107.CrossRefGoogle Scholar
  64. 64.
    Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J Am Chem Soc. 2002;124:8471–84.CrossRefGoogle Scholar
  65. 65.
    Koenig BW, Strey HH, Gawrisch K. Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997;73:1954–66.CrossRefGoogle Scholar
  66. 66.
    Struts AV, Salgado GFJ, Brown MF. Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci USA. 2011;108:8263–8.CrossRefGoogle Scholar
  67. 67.
    LeNeveu DM, Rand RP, Gingell D, Parsegian VA. Apparent modification of forces between lecithin bilayers. Science. 1976;191:399–400.CrossRefGoogle Scholar
  68. 68.
    Flores Jiménez RH, Do Cao M-A, Kim M, Cafiso DS. Osmolytes modulate conformational exchange in solvent-exposed regions of membrane proteins. Prot Sci. 2010;19:269–78.CrossRefGoogle Scholar
  69. 69.
    Sochacki KA, Shkel IA, Record MT, Weisshaar JC. Protein diffusion in the periplasm of E. coli under osmotic stress. Biophys J. 2011;100:22–31.CrossRefGoogle Scholar
  70. 70.
    Sefcik MD, Schaefer J, Stejskal EO, McKay RA, Ellena JF, Dodd SW, Brown MF. Lipid bilayer dynamics and rhodopsin-lipid interactions: new approach using high-resolution solid-state 13C NMR. Biochim Biophys Res Commun. 1983;114:1048–55.CrossRefGoogle Scholar
  71. 71.
    Rommel E, Noack F, Meier P, Kothe G. Proton spin relaxation dispersion studies of phospholipid membranes. J Phys Chem. 1988;92:2981–7.CrossRefGoogle Scholar
  72. 72.
    Brown MF, Salmon A, Henriksson U, Söderman O. Frequency dependent 2H N.M.R. relaxation rates of small unilamellar phospholipid vesicles. Mol Phys. 1990;69:379–83.CrossRefGoogle Scholar
  73. 73.
    Douliez JP, Bechinger B, Davis JH, Dufourc EJ. C−C bond order parameters from 2H and 13C solid-state NMR. J Phys Chem. 1996;100:17083–6.CrossRefGoogle Scholar
  74. 74.
    Rao MT, Bhuyan AK, Venu K, Sastry VSS. Nonlinear effect of GdnHCl on hydration dynamics of proteins: a 1H magnetic relaxation dispersion study. J Phys Chem B. 2009;113:6994–7002.CrossRefGoogle Scholar
  75. 75.
    Rajeswari M, Molugu TR, Dhara S, Sastry VSS, Venu K, Dabrowski R. Slow dynamics in a liquid crystal: 1H and 19F NMR relaxometry. J Chem Phys. 2011; 135:244507-1–9.Google Scholar
  76. 76.
    Rajeswari M, Molugu TR, Dhara S, Venu K, Sastry VSS, Dabrowski R, Multinuclear NMR. relaxometry studies in singly fluorinated liquid crystal. Chem Phys Lett. 2012;531:80–5.CrossRefGoogle Scholar
  77. 77.
    Stockton GW, Polnaszek CF, Tulloch AP, Hasan F, Smith ICP. Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry. 1976;15:954–66.CrossRefGoogle Scholar
  78. 78.
    Halle B. 2H NMR relaxation in phospholipid bilayers. Toward a consistent molecular interpretation. J Phys Chem. 1991;95:6724–33.CrossRefGoogle Scholar
  79. 79.
    Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry. 1992;31:1100–12.CrossRefGoogle Scholar
  80. 80.
    Nevzorov AA, Trouard TP, Brown MF. Lipid bilayer dynamics from simultaneous analysis of orientation and frequency dependence of deuterium spin-lattice and quadrupolar order relaxation. Phys Rev E. 1998;58:2259–81.CrossRefGoogle Scholar
  81. 81.
    Trouard TP, Nevzorov AA, Alam TM, Job C, Zajicek J, Brown MF. Influence of cholesterol on dynamics of dimyristoylphosphatidylcholine as studied by deuterium NMR relaxation. J Chem Phys. 1999;110:8802–18.CrossRefGoogle Scholar
  82. 82.
    Martinez GV, Dykstra EM, Lope-Piedrafita S, Job C, Brown MF. NMR elastometry of fluid membranes in the mesoscopic regime. Phys Rev E. 2002;66:050902-1–4.Google Scholar
  83. 83.
    Rose ME. Elementary theory of angular momentum. New York: Wiley; 1957.Google Scholar
  84. 84.
    Brink DM, Satchler GR. Angular momentum. London: Oxford University Press; 1968.Google Scholar
  85. 85.
    Dong RY. Nuclear spin relaxation theory. New York: Springer; 1997.CrossRefGoogle Scholar
  86. 86.
    Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc. 1982;104:4546–59.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Trivikram R. Molugu
    • 1
  • Xiaolin Xu
    • 2
  • Soohyun Lee
    • 1
  • K. J. Mallikarjunaiah
    • 3
  • Michael F. Brown
    • 4
  1. 1.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA
  2. 2.Department of PhysicsUniversity of ArizonaTucsonUSA
  3. 3.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  4. 4.Department of Chemistry and Biochemistry, and Department of PhysicsUniversity of ArizonaTucsonUSA

Section editors and affiliations

  • G. E. Martin
    • 1
  • Hazime Saito
    • 2
    • 3
  • Yining Huang
    • 4
  1. 1.Process & Analytical Chemistry, NMR Structure ElucidationMerck Research LaboratoriesRahwayUnited States
  2. 2.203, 3-15-21 Sumiyoshi-honmachiKobeJapan
  3. 3.Himeji Institute of Technology, University of HyogoKamigoriJapan
  4. 4.Department of Chemistry,The University of Western OntarioOntarioCanada

Personalised recommendations