Advertisement

Heterogeneous Rotational and Translational Dynamics in Glasses and Other Disordered Materials Studied by NMR

Reference work entry

Abstract

Disordered materials such as glass formers and amorphous solid electrolytes are characterized by ubiquitous nonexponential molecular and/or ionic dynamics. This chapter focuses mostly on their investigation via two-time stimulated-echo-based correlation functions. Underlying concepts are briefly reviewed and recent experimental examples from 2H, 7Li, 17O, 23Na, and 31P NMR are presented which encompass nonselective and selective central-transition excitation and a variety of relevant spin quantum numbers. Several recent methodological developments render also four-time stimulated-echo techniques applicable to a large array of probe nuclei. The higher-order correlation functions thus accessible enable quantitative insights into the origins of the nonexponentiality of atomic, ionic, or molecular motions. Provided that heterogeneous dynamics prevails, these experiments elucidate the temporal evolution of fast and slow subensembles, in particular by monitoring exchange processes among them. Together with corresponding frequency-domain techniques that are also touched upon, NMR methods to unravel the nature of nonexponentiality in a host of materials have become available for almost any probe nuclei.

Keywords

Dynamic heterogeneity Glasses Hexagonal ice Microcoils Multicomponent systems Multidimensional NMR Nonexponential dynamics Oxygen NMR Quadrupolar nuclei Second-order quadrupolar interactions Stimulated echoes 

Notes

Acknowledgement

Mischa Adjei-Acheamfour and Ken R. Jeffrey are thanked for fruitful collaborations. Financial support provided by the Deutsche Forschungsgemeinschaft under Grants No. BO1301/10-1, BO1301/13-1, VO905/8-2, and VO905/12-1 is highly appreciated.

References

  1. 1.
    Ngai KL. Relaxation and Diffusion in Complex Systems. Berlin: Springer; 2011.CrossRefGoogle Scholar
  2. 2.
    Böhmer R, Diezemann G, Hinze G, Rössler E. Dynamics of supercooled liquids and glassy solids. Prog. NMR Spectrosc. 2001;39:191.CrossRefGoogle Scholar
  3. 3.
    Bjorkstam JL, Listerud J, Villa M. NMR T1 and line narrowing in superionics – a consistent interpretation. Solid State Ionics. 1986;18–19:117.CrossRefGoogle Scholar
  4. 4.
    Richert R. Origin of Dispersion in Dipolar Relaxations of Glasses. Chem. Phys. Lett. 1993;216:223–7.CrossRefGoogle Scholar
  5. 5.
    Richert R, Israeloff N, Alba-Simionesco C, Ladieu F, L'Hôte D. In: Berthier L, Biroli G, Bouchaud JP, Cipelletti L, van Saarloos W, editors. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford: Oxford University Press; 2011. p. 152–202.CrossRefGoogle Scholar
  6. 6.
    Ediger MD. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 2000;51:99.CrossRefGoogle Scholar
  7. 7.
    Sillescu H. Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids. 1999;243:81.CrossRefGoogle Scholar
  8. 8.
    Hinze G, Diezemann G, Basché T. Rotational Correlation Functions of Single Molecules. Phys. Rev. Lett. 2004;93:203001.CrossRefGoogle Scholar
  9. 9.
    Kaufman LJ. Heterogeneity in single molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 2013;64:177.CrossRefGoogle Scholar
  10. 10.
    Schmidt-Rohr K, Spiess HW. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 1991;66:3020.CrossRefGoogle Scholar
  11. 11.
    Heuer A, Wilhelm M, Zimmermann H, Spiess HW. Rate memory of structural relaxation in glasses and its detection by multidimensional NMR. Phys. Rev. Lett. 1995;75:2851.CrossRefGoogle Scholar
  12. 12.
    Böhmer R, Diezemann G, Hinze G, Jeffrey KR, Winterlich M. Heterogeneous dynamics in disordered materials: Viscous liquids, plastic crystals, and glassy ionics. In: Webb GA, editor. Modern Magnetic Resonance, Applications in Materials, Food, and Marine Sciences, vol. 3 Dordrecht: Springer; 2006. p. 1467–71.Google Scholar
  13. 13.
    Schmidt-Rohr K, Spiess HW. Multidimensional Solid-State NMR and Polymers. London: Academic Press; 1994.Google Scholar
  14. 14.
    Böhmer R, Diezemann G, Hinze G, Sillescu H. A nuclear magnetic resonance study of higher-order correlation functions in supercooled ortho-terphenyl. J. Chem. Phys. 1998;108:890.CrossRefGoogle Scholar
  15. 15.
    Gullion T, Conradi MS. Anisotropic diffusion in benzene: 13C NMR study. Phys. Rev. B. 1985;32:7076.CrossRefGoogle Scholar
  16. 16.
    Rössler E. Two-Dimensional Exchange NMR Analysed In The Time Domain. Chem. Phys. Lett. 1986;128:330.CrossRefGoogle Scholar
  17. 17.
    Rössler E, Börner K, Tauchert J, Taupitz M, Pöschl M. Reorientational Correlation Functions Of Simple Supercooled Liquids As Revealed By NMR Studies. Ber. Bunsenges. Phys. Chem. 1991;95:1077.CrossRefGoogle Scholar
  18. 18.
    Spiess HW. Deuteron spin alignment: A probe for studying ultraslow motions in solids and solid polymers. J. Chem. Phys. 1980;72:6755.CrossRefGoogle Scholar
  19. 19.
    Jeffrey KR. Nuclear magnetic relaxation in a spin-1 system. Bull. Magn. Reson. 1981;3:69.Google Scholar
  20. 20.
    Tang XP, Wu Y. Alignment Echo of Spin-3/2 9Be Nuclei: Detection of Ultraslow Motion. J. Magn. Reson. 1998;133:155.CrossRefGoogle Scholar
  21. 21.
    Böhmer R. Multiple-Time Correlation Functions in Spin-3/2 Solid-State NMR Spectroscopy. J. Magn. Reson. 2000;147:78.CrossRefGoogle Scholar
  22. 22.
    Storek M, Böhmer R. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate. J. Magn. Reson. 2015;260:116; Corrigendum, J. Magn. Reson. 2016;272:60.Google Scholar
  23. 23.
    Schaefer D, Leisen J, Spiess HW. Experimental Aspects of Multidimensional Exchange Solid-State NMR. J. Magn. Reson. A. 1995;115:60.CrossRefGoogle Scholar
  24. 24.
    Qi F, Diezemann G, Böhm H, Lambert J, Böhmer R. Simple modeling of dipolar coupled 7Li spins and stimulated-echo spectroscopy of single-crystalline β-eucryptite. J. Magn. Reson. 2004;169:225.CrossRefGoogle Scholar
  25. 25.
    Hinze G, Böhmer R, Diezemann G, Sillescu H. Experimental Determination of Four-Time Stimulated Echoes in Liquids, Colloidal Suspensions, and Crystals. J. Magn. Reson. 1998;131:218.CrossRefGoogle Scholar
  26. 26.
    Böhmer R, Storek M, Vogel M. NMR studies of ionic dynamics in solids. In: Hodgkinson P, editor. Modern Methods in Solid-State NMR: A Practitioners’ Guide. London: Royal Society of Chemistry; 2017.Google Scholar
  27. 27.
    Bowden GD, Hutchison WD, Khachan J. Tensor Operator Formalism for Multiple-Quantum NMR. 2. Spins 3/2, 2, and 5/2 and General I. J. Magn. Reson. 1986;67:415.Google Scholar
  28. 28.
    Jessat T, Adjei-Acheamfour M, Storek M, Böhmer R. Submillimeter coils for stimulated-echo spectroscopy of a solid sodium ion conductor by nonselective excitation of MHz broad 23Na quadrupolar satellite spectra. State Nucl. Magn. Reson. 2017;82:16.CrossRefGoogle Scholar
  29. 29.
    Adjei-Acheamfour M, Böhmer R. Second-order quadrupole interaction based detection of ultra-slow motions: Tensor operator framework for central-transition spectroscopy and the dynamics in hexagonal ice as an experimental example. J. Magn. Reson. 2014;249:141.CrossRefGoogle Scholar
  30. 30.
    deAzevedo ER, WG H, Bonagamba TJ, Schmidt-Rohr K. Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to centerband-only detection of exchange. J. Chem. Phys. 2000;112:8988.CrossRefGoogle Scholar
  31. 31.
    Kimmich R, Anoardo E. Field-cycling NMR relaxometry. Prog. NMR Spectrosc. 2004;44:257.CrossRefGoogle Scholar
  32. 32.
    Fujara F, Kruk D, Privalov AF. Solid-state Field-Cycling Relaxometry, Instrumental improvements and new application. Prog. NMR Spectrosc. 2014;82:39.CrossRefGoogle Scholar
  33. 33.
    Graf M, Kresse B, Privalov AF, Vogel M. Combining 7Li field-cycling relaxometry and stimulated-echo experiments: A powerful approach to lithium ion dynamics in solid-state electrolytes. Solid State Nucl. Mag. Reson. 2013;51-52:25.CrossRefGoogle Scholar
  34. 34.
    Gabriel J, Petrov OV, Kim Y, Martin SW, Vogel M. Lithium ion dynamics in Li2S + GeS2 + GeO2 glasses studied using 7Li field-cycling relaxometry and line-shape analysis. Solid State Nucl. Mag. Reson. 2015;70:53.CrossRefGoogle Scholar
  35. 35.
    Rössler E, Taupitz M, Börner K, Schulz M, Vieth HM. A simple method analyzing 2H nuclear magnetic resonance line shapes to determine the activation energy distribution of mobile guest molecules in disordered systems. J. Chem. Phys. 1990;92:5847.CrossRefGoogle Scholar
  36. 36.
    Bock D, Kahlau R, Pötzschner B, Wagner E, Rössler EA. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy. J. Chem. Phys. 2014;140:094505.CrossRefGoogle Scholar
  37. 37.
    Bock D, Petzold N, Kahlau R, Gradmann S, Schmidtke B, Benoit N, Rössler EA. Dynamic heterogeneities in glass-forming systems. J. Non-Cryst. Solids. 2015;407:88, and references cited therein.CrossRefGoogle Scholar
  38. 38.
    Faske S, Koch B, Murawski S, Küchler R, Böhmer R, Melchior J, Vogel M. Mixed-cation LixAg1–xPO3 glasses studied by 6Li, 7Li, and 109Ag stimulated-echo NMR spectroscopy. Phys. Rev. B. 2011;84:024202, and references cited therein.Google Scholar
  39. 39.
    Wu G. Solid-State 17O NMR Spectroscopy of Organic and Biological Molecules, G.A. Webb (ed.), Modern Magnetic Resonance, Cham: Springer; 2018.  https://doi.org/10.1007/978-3-319-28275-6_70-1
  40. 40.
    Spiess HW, Garrett BB, Sheline RK, Rabideau SW. Oxygen-17 quadrupole coupling parameters for water in its various phases. J. Chem. Phys. 1969;51:1201.CrossRefGoogle Scholar
  41. 41.
    Geil B, Kirschgen T, Fujara F. Mechanism of proton transport in hexagonal ice. Phys. Rev. B. 2005;72:014304.CrossRefGoogle Scholar
  42. 42.
    Adjei-Acheamfour M, Tilly JF, Beerwerth J, Böhmer R. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance. J. Chem. Phys. 2015;143:214201.CrossRefGoogle Scholar
  43. 43.
    Yamauchi K, Janssen J, Kentgens A. Implementing solenoid microcoils for wide-line solid-state NMR. J. Magn. Reson. 2004;167:87.CrossRefGoogle Scholar
  44. 44.
    Witschas M, Eckert H. 31P and 23Na Solid-State NMR Studies of Cation Dynamics in HT-Sodium Orthophosphate and the Solid Solutions (Na2SO4)x(Na3PO4)1–x. J. Phys. Chem. A. 1999;103:10764.CrossRefGoogle Scholar
  45. 45.
    Böhmer R. Non-exponential relaxation in disordered materials: Phenomenological correlations and spectrally selective experiments. Phase Trans. 1998;65:211.CrossRefGoogle Scholar
  46. 46.
    Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M. Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids. 1998;235-237:1.CrossRefGoogle Scholar
  47. 47.
    Tracht U, Heuer A, Spiess HW. Different dynamic filters constructed from multidimensional NMR experiments. J. Non-Cryst. Solids. 1998;235-237:27.CrossRefGoogle Scholar
  48. 48.
    Storek M, Tilly J, Jeffrey KR, Böhmer R. Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: Application to lithium borate glass. J. Magn. Reson. 2017;282:1.CrossRefGoogle Scholar
  49. 49.
    Adjei-Acheamfour M, Storek M, Böhmer R. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance. J. Chem. Phys. 2017;146:181101.CrossRefGoogle Scholar
  50. 50.
    Hinze G, Diezemann G, Sillescu H. Four-time rotational correlation functions. Europhys. Lett. 1998;44:565.CrossRefGoogle Scholar
  51. 51.
    Böhmer R, Kremer F. Dielectric spectroscopy and multidimensional NMR - A comparison. In: Kremer F, Schönhals A, editors. Broadband dielectric spectroscopy. Springer: Berlin; 2002. p. 625–84.Google Scholar
  52. 52.
    Vogel M, Brinkmann C, Eckert H, Heuer A. Origin of nonexponential relaxation in a crystalline ion conductor: a multidimensional 109Ag NMR study. Phys. Rev. B. 2004;69:094302.CrossRefGoogle Scholar
  53. 53.
    Winterlich M, Diezemann G, Zimmermann H, Böhmer R. Microscopic origin of the nonexponential dynamics in a glassy crystal. Phys. Rev. Lett. 2003;91:235504.CrossRefGoogle Scholar
  54. 54.
    Winterlich M, Böhmer R, Diezemann G, Zimmermann H. Rotational motion in the molecular crystals meta- and ortho-carborane studied by deuteron nuclear magnetic resonance. J. Chem. Phys. 2005;123:094504.CrossRefGoogle Scholar
  55. 55.
    Vogel M, Brinkmann C, Heuer A, Eckert H. On the lifetime of dynamical heterogeneities associated with the ionic jump motion in glasses: Results from molecular dynamics simulations and NMR experiments. J. Non-Cryst. Solids. 2006;352:5156.CrossRefGoogle Scholar
  56. 56.
    Brinkmann C, Faske S, Vogel M, Nilges T, Heuer A, Eckert H. Silver ion dynamics in the Ag5Te2Cl-polymorphs revealed by solid state NMR lineshape and two- and three-time correlation spectroscopies. Phys. Chem. Chem. Phys. 2006;8:369.CrossRefGoogle Scholar
  57. 57.
    Vogel M, Torbrügge T. Nonexponential polymer segmental motion in the presence and absence of ions: 2H NMR multitime correlation functions for polymer electrolytes poly(propylene glycol)-LiClO4. J. Chem. Phys. 2007;126:204902.CrossRefGoogle Scholar
  58. 58.
    Schnauss W, Fujara F, Hartmann K, Sillescu H. Nonexponential 2H spin-lattice relaxation as a signature of the glassy state. Chem. Phys. Lett. 1990;166:381.CrossRefGoogle Scholar
  59. 59.
    Leisen J, Schmidt-Rohr K, Spiess HW. Nonexponential relaxation functions above Tg analyzed by multidimensional NMR and novel spin-echo decay techniques. Physica A. 1993;201:79.CrossRefGoogle Scholar
  60. 60.
    Sen S, Stebbins JF. Heterogeneous NO3 Ion Dynamics near the Glass Transition in the Fragile Ionic Glass Former Ca0.4K0.6(NO3)1.4: A 15N NMR Study. Phys. Rev. Lett. 1997;78:3495.CrossRefGoogle Scholar
  61. 61.
    Vogel M, Rössler E. Exchange Processes in Disordered Systems Studied by Solid-State 2D NMR. J. Phys. Chem. A. 1998;102:2102.CrossRefGoogle Scholar
  62. 62.
    Böhmer R, Diezemann G, Geil B, Hinze G, Nowaczyk A, Winterlich M. Correlation of primary and secondary relaxations in a supercooled liquid. Phys. Rev. Lett. 2006;97:135701.CrossRefGoogle Scholar
  63. 63.
    Schildmann S, Nowaczyk A, Geil B, Gainaru C, Böhmer R. Water dynamics on the hydrate lattice of a tetra-butyl ammonium bromide semi-clathrate. J. Chem. Phys. 2009;130:104505.CrossRefGoogle Scholar
  64. 64.
    Brinkmann C, Faske S, Koch B, Vogel M. NMR Multi-Time Correlation Functions of Ion Dynamics in Solids. Z. Phys. Chem. 2010;224:1535.CrossRefGoogle Scholar
  65. 65.
    Adjei-Acheamfour M, Storek M, Beerwerth J, Böhmer R. Two-dimensional second-order quadrupolar exchange powder spectra for nuclei with half-integer spins. Calculations and an experimental example using oxygen NMR. Solid State Nucl. Magn. Reson. 2015;71:96.CrossRefGoogle Scholar
  66. 66.
    Note that on the basis of deuteron NMR investigations the situation is less clear, see Kirschgen TM, Zeidler MD, Geil B, Fujara F. A deuteron NMR study of the tetrahydrofuran clathrate hydrate, Part II: Coupling of rotational and translational dynamics of water, Phys. Chem. Chem. Phys. 2003;5:5247.Google Scholar
  67. 67.
    Hasiuk T, Jeffrey KR. 6Li NMR in lithium borate glasses. Solid State Nucl. Magn. Reson. 2008;34:228.CrossRefGoogle Scholar
  68. 68.
    Storek M, Jeffrey KR, Böhmer R. Local-field approximation of homonuclear dipolar interactions in 7Li-NMR: Density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses. Solid State Nucl. Magn. Reson. 2014;59-60:8.CrossRefGoogle Scholar
  69. 69.
    Böhmer R, Hinze G, Diezemann G, Geil B, Sillescu H. Dynamic heterogeneity in supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett. 1996;36:55.CrossRefGoogle Scholar
  70. 70.
    Diezemann G. A free-energy landscape model for primary relaxation in glass-forming liquids: Rotations and dynamic heterogeneities. J. Chem. Phys. 1996;107:10112.CrossRefGoogle Scholar
  71. 71.
    Heuer A. Information content of multitime correlation functions for the interpretation of structural relaxation in glass-forming systems. Phys. Rev. E. 1997;56:730.CrossRefGoogle Scholar
  72. 72.
    Vogel M, Brinkmann C, Eckert H, Heuer A. Silver dynamics in silver iodide/silver phosphate glasses studied by multi-dimensional 109Ag NMR. Phys. Chem. Chem. Phys. 2002;4:3237.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät PhysikTechnische Universität DortmundDortmundGermany
  2. 2.Institut für FestkörperphysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations