Functional MRI and Sensory Perception of Food

  • Jean-Marie Bonny
  • C. Sinding
  • T. Thomas-Danguin
Reference work entry


Nowadays, human brain activity in response to complex paradigms can be extensively mapped. Though introduced relatively recently, functional magnetic resonance imaging (fMRI) based on blood-oxygen-level-dependent contrast has developed dramatically. It is a noninvasive and exploratory approach which provides in a relatively direct way a differentiated measure of each processing step within the brain, the complete network giving access to cognitive mechanisms. Compared with the other functional imaging methods, fMRI offers high spatial and temporal resolution, and so can detail cognitive tasks both in space and in time by following the time course of the operations. This review deals with how this detailed breakdown is achieved. A further aim is to show how and why fMRI can be used to study sensory perceptions that might, at first sight, seem hard to address by this method, namely perceptions during eating. The processing of stimuli from food by the brain is one determinant of food representation, but also of food liking and wanting, which in turn control appetite, and ultimately food intake. Food consumption also activates the reward system, which thus helps to control food intake. fMRI experiments conducted with human subjects have largely helped to gain a fuller understanding of these intricate brain processes. Among the sensations triggered by food, visual, olfactory, gustatory, and somatosensory cues are the most salient. Accordingly, we focus here on these sensory systems and on the integration of the two senses necessary to produce flavor perception: namely olfaction and gustation.


Functional Magnetic resonance imaging Human brain mapping Blood-oxygen-level-dependent (BOLD) Olfaction Gustation Somatosensory Vision Chemical senses Integration 


  1. 1.
    Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K. Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. MAGMA. 2012;25(3):177–82.CrossRefGoogle Scholar
  2. 2.
    Goerke U, Garwood M, Ugurbil K. Functional magnetic resonance imaging using RASER. Neuroimage. 2011;54(1):350–60.CrossRefGoogle Scholar
  3. 3.
    Vazquez AL, Fukuda M, Crowley JC, Kim SG. Neural and hemodynamic responses elicited by forelimb- and photo-stimulation in channelrhodopsin-2 mice: insights into the hemodynamic point spread function. Cereb Cortex. 2014;24(11):2908–19.CrossRefGoogle Scholar
  4. 4.
    Schoenfeld MA, et al. Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience. 2004;127(2):347–53.CrossRefGoogle Scholar
  5. 5.
    Kelly C, et al. A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage. 2012;61(4):1129–42.CrossRefGoogle Scholar
  6. 6.
    Cauda F, et al. Meta-analytic clustering of the insular cortex: characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage. 2012;62(1):343–55.CrossRefGoogle Scholar
  7. 7.
    Triantafyllou C, et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage. 2005;26(1):243–50.CrossRefGoogle Scholar
  8. 8.
    Iranpour J, Morrot G, Claise B, Jean B, Bonny JM. Using high spatial resolution to Improve BOLD fMRI detection at 3T. PLoS One. 2015;10(11):e0141358.CrossRefGoogle Scholar
  9. 9.
    Feinberg DA, et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One. 2010;5(12):e15710.CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Castillo J, et al. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc Natl Acad Sci U S A. 2012;109(14):5487–92.CrossRefGoogle Scholar
  11. 11.
    Monti MM. Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front Hum Neurosci. 2011;5:28.CrossRefGoogle Scholar
  12. 12.
    Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.CrossRefGoogle Scholar
  13. 13.
    Dalenberg JR, Weitkamp L, Renken RJ, Nanetti L, Ter Horst GJ. Flavor pleasantness processing in the ventral emotion network. PLoS One. 2017;12(2):e0170310.CrossRefGoogle Scholar
  14. 14.
    Shi Z, et al. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials. Proc Natl Acad Sci U S A. 2017;114(20):5253–8.CrossRefGoogle Scholar
  15. 15.
    Goense J, Whittingstall K, Logothetis NK. Neural and BOLD responses across the brain. Wiley Interdiscip Rev Cogn Sci. 2012;3(1):75–86.CrossRefGoogle Scholar
  16. 16.
    Hoge RD, et al. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42(5):849–63.CrossRefGoogle Scholar
  17. 17.
    Blockley NP, Griffeth VE, Simon AB, Buxton RB. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed. 2013;26(8):987–1003.CrossRefGoogle Scholar
  18. 18.
    Blockley NP, Griffeth VE, Stone AJ, Hare HV, Bulte DP. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction. Neuroimage. 2015;122:105–13.CrossRefGoogle Scholar
  19. 19.
    Shepherd GM. Smell images and the flavour system in the human brain. Nature. 2006;444(7117):316–21.CrossRefGoogle Scholar
  20. 20.
    Gottfried JA. Central mechanisms of odour object perception. Nat Rev Neurosci. 2010;11(9):628–41.CrossRefGoogle Scholar
  21. 21.
    Thomas-Danguin T, et al. The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psych. 2014;5:504.Google Scholar
  22. 22.
    Morrot G, Bonny JM, Lehallier B, Zanca M. fMRI of human olfaction at the individual level: interindividual variability. J Magn Reson Imaging. 2013;37(1):92–100.CrossRefGoogle Scholar
  23. 23.
    Rolls ET. Taste, olfactory, and food reward value processing in the brain. Prog Neurobiol. 2015;127–128:64–90.CrossRefGoogle Scholar
  24. 24.
    Topolovec JC, Gati JS, Menon RS, Shoemaker JK, Cechetto DF. Human cardiovascular and gustatory brainstem sites observed by functional magnetic resonance imaging. J Comp Neurol. 2004;471(4):446–61.CrossRefGoogle Scholar
  25. 25.
    Small DM. Taste representation in the human insula. Brain Struct Funct. 2010;214(5–6):551–61.CrossRefGoogle Scholar
  26. 26.
    De Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci. 2003;18(7):2059–68.CrossRefGoogle Scholar
  27. 27.
    Buck LB. Smell and Taste: The Chemical Senses. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, Mack S, editors. Principles of Neural Science. New York: McGraw-Hill Medical; 2013. p. 642.Google Scholar
  28. 28.
    Green BG. Chemesthesis and the chemical senses as components of a “chemofensor complex”. Chem Senses. 2012;37(3):201–6.CrossRefGoogle Scholar
  29. 29.
    Bensafi M, Iannilli E, Gerber J, Hummel T. Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems. Neuroscience. 2008;154(2):832–8.CrossRefGoogle Scholar
  30. 30.
    De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24(12):3086–93.CrossRefGoogle Scholar
  31. 31.
    Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.CrossRefGoogle Scholar
  32. 32.
    Koster EP, Moller P, Mojet J. A “Misfit” Theory of Spontaneous Conscious Odor Perception (MITSCOP): reflections on the role and function of odor memory in everyday life. Front Psych. 2014;5:64.Google Scholar
  33. 33.
    Gaillet-Torrent M, Sulmont-Rosse C, Issanchou S, Chabanet C, Chambaron S. Impact of a non-attentively perceived odour on subsequent food choices. Appetite. 2014;76:17–22.CrossRefGoogle Scholar
  34. 34.
    Köster EP. Diversity in the determinants of food choice: a psychological perspective. Food Qual Prefer. 2009;20(2):70–82.CrossRefGoogle Scholar
  35. 35.
    Smith B. Perspective: complexities of flavour. Nature. 2012;486(7403):S6.CrossRefGoogle Scholar
  36. 36.
    Small DM, Prescott J. Odor/taste integration and the perception of flavor. Exp Brain Res. 2005;166(3–4):345–57.CrossRefGoogle Scholar
  37. 37.
    Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004;127(1):207–21.CrossRefGoogle Scholar
  38. 38.
    Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14(9):5437–52.CrossRefGoogle Scholar
  39. 39.
    Maier JX, Wachowiak M, Katz DB. Chemosensory convergence on primary olfactory cortex. J Neurosci. 2012;32(48):17037–47.CrossRefGoogle Scholar
  40. 40.
    Maier JX, Blankenship ML, Li JX, Katz DB. A multisensory network for olfactory processing. Curr Biol. 2015;25(20):2642–50.CrossRefGoogle Scholar
  41. 41.
    Small DM. Flavor and the formation of category-specific processing in olfaction. Chemosens Percept. 2008;1(2):136–46.CrossRefGoogle Scholar
  42. 42.
    Stevenson RJ, Boakes RA, Wilson JP. Counter-conditioning following human odor–taste and color–taste learning. Learn Motiv. 2000;31(2):114–27.CrossRefGoogle Scholar
  43. 43.
    Small DM, Veldhuizen MG, Green BG. Sensory neuroscience: taste responses in primary olfactory cortex. Curr Biol. 2013;23(4):R157–9.CrossRefGoogle Scholar
  44. 44.
    Rolls ET, Critchley HD, Verhagen JV, Kadohisa M. The representation of information about taste and odor in the orbitofrontal cortex. Chemosens Percept. 2010;3(1):16–33.CrossRefGoogle Scholar
  45. 45.
    Small DM, et al. Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol. 2004;92(3):1892–903.CrossRefGoogle Scholar
  46. 46.
    Seo HS, et al. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study. Hum Brain Mapp. 2013;34(1):62–76.CrossRefGoogle Scholar
  47. 47.
    Smith CM, et al. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice. Proc Natl Acad Sci U S A. 2016;113(48):13893–8.CrossRefGoogle Scholar
  48. 48.
    Sakai N, Yamamoto T. Effects of excitotoxic brain lesions on taste-mediated odor learning in the rat. Neurobiol Learn Mem. 2001;75(2):128–39.CrossRefGoogle Scholar
  49. 49.
    Seubert J, Ohla K, Yokomukai Y, Kellermann T, Lundstrom JN. Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling. Hum Brain Mapp. 2015;36(5):1662–76.CrossRefGoogle Scholar
  50. 50.
    Verhagen JV. The neurocognitive bases of human multimodal food perception: consciousness. Brain Res Rev. 2007;53(2):271–86.CrossRefGoogle Scholar
  51. 51.
    Buettner A, Beer A, Hannig C, Settles M, Schieberle P. Physiological and analytical studies on flavor perception dynamics as induced by the eating and swallowing process. Food Qual Prefer. 2002;13(7–8):497–504.CrossRefGoogle Scholar
  52. 52.
    Shingai T, Miyaoka Y, Ikarashi R, Shimada K. Swallowing reflex elicited by water and taste solutions in humans. Am J Physiol. 1989;256(4 Pt 2):R822–6.Google Scholar
  53. 53.
    Boisard L, et al. Salt and fat contents influence the microstructure of model cheeses, chewing/swallowing and in vivo aroma release. Flavour Fragr J. 2014;29(2):95–106.CrossRefGoogle Scholar
  54. 54.
    Emorine M, et al. Use of sensors to measure in-mouth salt release during food chewing. IEEE Sensors J. 2012;12(11):3124–30.CrossRefGoogle Scholar
  55. 55.
    Neyraud E, Heinzerling CI, Bult JHF, Mesmin C, Dransfield E. Effects of different tastants on parotid saliva flow and composition. Chemosens Percept. 2009;2(2):108–16.CrossRefGoogle Scholar
  56. 56.
    Sayer R, Dhillon J, Tamer Jr G, Campbell W, Mattes R. Effect of almond consumption on the neural response in the left insula. FASEB J. 2015;29(1 Supplement):46.Google Scholar
  57. 57.
    van der Laan LN, de Ridder DT, Viergever MA, Smeets PA. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage. 2011;55(1):296–303.CrossRefGoogle Scholar
  58. 58.
    Murdaugh DL, Cox JE, Cook 3rd EW, Weller RE. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. Neuroimage. 2012;59(3):2709–21.CrossRefGoogle Scholar
  59. 59.
    Button KS, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76.CrossRefGoogle Scholar
  60. 60.
    Di Russo F, et al. Spatiotemporal brain mapping during preparation, perception, and action. Neuroimage. 2016;126:1–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-Marie Bonny
    • 1
  • C. Sinding
    • 2
  • T. Thomas-Danguin
    • 2
  1. 1.INRA, AgroResonance - UR370 QuaPA, Auvergne Rhône-Alpes, Saint-Genès-ChampanelleClermont-FerrandFrance
  2. 2.Centre des Sciences du Goût et de l’AlimentationINRA, AgroSup Dijon, CNRS, University of Bourgogne Franche-ComtéDijonFrance

Personalised recommendations