Advertisement

NMR Imaging of Meat

Reference work entry

Abstract

Magnetic resonance imaging (MRI) is a tool of choice that responds to some of the challenges facing the meat industry. This imaging method, which is three-dimensional and offers multiple contrast options, gives access to several types of information on meat products. Its nondestructiveness lends it a further advantage for the longitudinal monitoring of products during processing. The nature of the information produced is closely dependent on the scale of observation. At the voxel scale, MRI shows the distribution of certain components of interest, in particular fat, connective tissue and water in meat products, and also salt via sodium MRI. Indirect measurement, based on the quantification of parameters sensitive to microstructural organizations, allows a finer level of observation providing information at cell scale and even subcellular scale: diffusion and relaxometry parameters are the main indicators of interactions at muscle cell level. At these different scales, MRI has been widely used to improve nutritional properties of meat products by reducing fat and salt contents and to optimize processing, mainly cooking, and salting/drying.

Keywords

Meat MRI Meat NMR Quantitative MRI Meat processing Structural characterization Sodium Salt Cooking Salting 

References

  1. 1.
    Hills B. Food processing: an MRI perspective. Trends Food Sci Technol. 1995;6(4):111–7.CrossRefGoogle Scholar
  2. 2.
    Damez J-L, Clerjon S. Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 2008;80(1):132–49. PubMed PMID: WOS:000257850400016.CrossRefGoogle Scholar
  3. 3.
    Xiong ZJ, Sun DW, Pu HB, Gao WH, Dai Q. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: a review. Crit Rev Food Sci Nutr. 2017;57(4):755–68. PubMed PMID: WOS:000390393300008.CrossRefGoogle Scholar
  4. 4.
    Valous NA, Mendoza F, Sun D-W. Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: a review. Trends Food Sci Technol. 2010;21(1):26–43.CrossRefGoogle Scholar
  5. 5.
    Clerjon S, Bonny JM. Diffusion-weighted NMR micro-imaging of lipids: application to food products. In: Renou JP, Belton PS, Webb GA, editors. Magnetic resonance in food science: an exciting future. Cambridge: The Royal Society of Chemistry; 2011. p. 182–9.Google Scholar
  6. 6.
    Clerjon S, Kondjoyan A, Bonny JM, Portanguen S, Chevarin C, Thomas A, et al. Oil uptake by beef during pan frying: impact on fatty acid composition. Meat Sci. 2012;91(1):79–87.CrossRefGoogle Scholar
  7. 7.
    Tingle JM, Pope JM, Baumgartner PA, Sarafis V. Magnetic resonance imaging of fat and muscle distribution in meat. Int J Food Sci Technol. 1995;30(4):437–46.CrossRefGoogle Scholar
  8. 8.
    Pérez-Palacios T, Antequera T, Durán ML, Caro A, Rodríguez PG, Palacios R. MRI-based analysis of feeding background effect on fresh Iberian ham. Food Chem. 2011;126(3):1366–72.CrossRefGoogle Scholar
  9. 9.
    Fantazzini P, Gombia M, Schembri P, Simoncini N, Virgili R. Use of magnetic resonance imaging for monitoring Parma dry-cured ham processing. Meat Sci. 2009;82(2):219–27.CrossRefGoogle Scholar
  10. 10.
    Lee S, Lohumi S, Lim HS, Gotoh T, Cho BK, Jung S. Determination of intramuscular fat content in beef using magnetic resonance imaging. J Fac Agric Kyushu Univ. 2015;60(1):157–62. PubMed PMID: WOS:000351329700021.Google Scholar
  11. 11.
    Monziols M, Collewet G, Bonneau M, Mariette F, Davenel A, Kouba M. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Sci. 2006;72(1):146–54.CrossRefGoogle Scholar
  12. 12.
    Laurent WM, Bonny JM, Renou JP. Imaging of water and fat fractions in high-field MRI with multiple slice chemical shift-selective inversion recovery. J Magn Reson Imaging. 2000;12(3):488–96.CrossRefGoogle Scholar
  13. 13.
    Monziols M, Collewet G, Mariette F, Kouba M, Davenel A. Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magn Reson Imaging. 2005;23(6):745–55.CrossRefGoogle Scholar
  14. 14.
    Li Y, Li X, Wang JZ, Zhang CH, Sun HM, Wang CQ, et al. Effects of oxidation on water distribution and physicochemical properties of porcine myofibrillar protein gel. Food Biophys. 2014;9(2):169–78. PubMed PMID: WOS:000336369500008.CrossRefGoogle Scholar
  15. 15.
    Zhang F-l, Liang Y, C-p T, Y-m L, Cui B. Research on the water-holding capacity of pork sausage with acetate cassava starch. Starch-Starke. 2014;66(11–12):1033–40. PubMed PMID: WOS:000344643200013.CrossRefGoogle Scholar
  16. 16.
    Bertram HC, Whittaker AK, Andersen HJ, Karlsson AH. Visualization of drip channels in meat using NMR microimaging. Meat Sci. 2004;68(4):667–70.CrossRefGoogle Scholar
  17. 17.
    Dolata W, Piotrowska E, Wajdzik J, Tritt-Goc J. The use of the MRI technique in the evaluation of water distribution in tumbled porcine muscle. Meat Sci. 2004;67(1):25–31.CrossRefGoogle Scholar
  18. 18.
    Caballero D, Antequera T, Caro A, Luisa Duran M, Perez-Palacios T. Data mining on mri-computational texture features to predict sensory characteristics in ham. Food Bioprocess Technol. 2016a;9(4):699–708. PubMed PMID: WOS:000371614300014.CrossRefGoogle Scholar
  19. 19.
    Pérez-Palacios T, Antequera T, Durán ML, Caro A, Rodríguez PG, Ruiz J. MRI-based analysis, lipid composition and sensory traits for studying Iberian dry-cured hams from pigs fed with different diets. Food Res Int. 2010;43(1):248–54.CrossRefGoogle Scholar
  20. 20.
    Bonny JM, Laurent W, Renou JP. Detection of susceptibility effects using simultaneous T-2* and magnetic field mapping. Magn Reson Imaging. 2000;18(9):1125–8.CrossRefGoogle Scholar
  21. 21.
    Sifre L, Berge P, Engel E, Martin JF, Bonny JM, Listrat A, et al. Influence of the spatial organization of the perimysium on beef tenderness. J Agric Food Chem. 2005;53(21):8390–9. PubMed PMID: WOS:000232611900043.CrossRefGoogle Scholar
  22. 22.
    Mahmoud-Ghoneim D, Bonny JM, Renou JP, de Certaines JD. Ex-vivo magnetic resonance image texture analysis can discriminate genotypic origin in bovine meat. J Sci Food Agric. 2005;85(4):629–32.CrossRefGoogle Scholar
  23. 23.
    Renou JP, Foucat L, Bonny JM. Magnetic resonance imaging studies of water interactions in meat. Food Chem. 2003;82(1):35–9.CrossRefGoogle Scholar
  24. 24.
    Bonny JM, Renou JP. Water diffusion features as indicators of muscle structure ex vivo. Magn Reson Imaging. 2002;20(5):395–400.CrossRefGoogle Scholar
  25. 25.
    Khalil C, Budzik JF, Kermarrec E, Balbi V, Le Thuc V, Cotten A. Tractography of peripheral nerves and skeletal muscles. Eur J Radiol. 2010;76(3):391–7.CrossRefGoogle Scholar
  26. 26.
    Bonny JM, Sante-Lhoutellier V, Renou JP. Multiexponential diffusion in meat at high B-values by MRI. In: Magnetic resonance in food science: the multivariate challenge, The Royal Society of Chemistry; 2015. p. 141–7Google Scholar
  27. 27.
    Damez JL, Clerjon S, Bonny JM. Microsctructure characterization of muscle food by quantitative MRI. 11th International conference on the applications of magnetic resonance in food, Wageningen, 26–29 June 2012; 2012 p. 60.Google Scholar
  28. 28.
    Astruc T, Bonny JM, Clerjon S, Damez JL, Labas R, Venien A. Microstructure characterization of muscle tissue by quantitative imaging. In: Axelos M, editor. The DREAM Project book of results. Ljubljana: University of Ljubljana; 2014. p. 35–8.Google Scholar
  29. 29.
    Bajd F, Škrlep M, Čandek-Potokar M, Vidmar J, Serša I. Application of quantitative magnetization transfer magnetic resonance imaging for characterization of dry-cured hams. Meat Sci. 2016a;122:109–18.CrossRefGoogle Scholar
  30. 30.
    Renou JP, Benderbous S, Bielicki G, Foucat L, Donnat JP. Na-23 magnetic-resonance-imaging – distribution of brine in muscle. Magn Reson Imaging. 1994;12(1):131–7. PubMed PMID: WOS:A1994ML32500015. English.CrossRefGoogle Scholar
  31. 31.
    Guiheneuf TM, Gibbs SJ, Hall LD. Measurement of the inter-diffusion of sodium ions during pork brining by one-dimensional Na-23 magnetic resonance imaging (MRI). J Food Eng. 1997;31(4):457–71.CrossRefGoogle Scholar
  32. 32.
    Bertram HC, Holdsworth SJ, Whittaker AD, Andersen HJ. Salt diffusion and distribution in meat studied by Na-23 nuclear magnetic resonance imaging and relaxometry. J Agric Food Chem. 2005;53(20):7814–8.CrossRefGoogle Scholar
  33. 33.
    Hansen CL, van der Berg F, Ringgaard S, Stodkilde-Jorgensen H, Karlsson AH. Diffusion of NaCl in meat studied by H-1 and Na-23 magnetic resonance imaging. Meat Sci. 2008;80(3):851–6.CrossRefGoogle Scholar
  34. 34.
    Vestergaard C, Risum J, Adler-Nissen J. Na-23-MRI quantification of sodium and water mobility in pork during brine curing. Meat Sci. 2005;69(4):663–72.CrossRefGoogle Scholar
  35. 35.
    Veliyulin E, Egelandsdal B, Marica F, Balcom BJ. Quantitative Na-23 magnetic resonance imaging of model foods. J Agric Food Chem. 2009;57(10):4091–5.CrossRefGoogle Scholar
  36. 36.
    Fiege DP, Romanzetti S, Tse DHY, Brenner D, Celik A, Felder J, et al. B-0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme. J Magn Reson. 2013;228:32–6. PubMed PMID: WOS:000315934700003.CrossRefGoogle Scholar
  37. 37.
    Fantazzini P, Bortolotti V, Garavaglia C, Gombia M, Riccardi S, Schembri P, et al. Magnetic resonance imaging and relaxation analysis to predict noninvasively and nondestructively salt-to-moisture ratios in dry-cured meat. Magn Reson Imaging. 2005;23(2):359–61.CrossRefGoogle Scholar
  38. 38.
    Antequera T, Caro A, Rodríguez PG, Pérez T. Monitoring the ripening process of Iberian ham by computer vision on magnetic resonance imaging. Meat Sci. 2007;76(3):561–7.CrossRefGoogle Scholar
  39. 39.
    Pérez-Palacios T, Caballero D, Caro A, Rodríguez PG, Antequera T. Applying data mining and computer vision techniques to MRI to estimate quality traits in Iberian hams. J Food Eng. 2014;131(0):82–8.CrossRefGoogle Scholar
  40. 40.
    Caballero D, Caro A, Rodríguez PG, Durán ML, MdM Á, Palacios R, et al. Modeling salt diffusion in Iberian ham by applying MRI and data mining. J Food Eng. 2016b;189:115–22.CrossRefGoogle Scholar
  41. 41.
    Manzocco L, Anese M, Marzona S, Innocente N, Lagazio C, Nicoli MC. Monitoring dry-curing of S. Daniele ham by magnetic resonance imaging. Food Chem. 2013;141(3):2246–52.CrossRefGoogle Scholar
  42. 42.
    Bajd F, Škrlep M, Čandek-Potokar M, Vidmar J, Serša I. Use of multiparametric magnetic resonance microscopy for discrimination among different processing protocols and anatomical positions of Slovenian dry-cured hams. Food Chem. 2016b;197, Part B:1093–101.CrossRefGoogle Scholar
  43. 43.
    Bouhrara M, Clerjon S, Damez JL, Kondjoyan A, Bonny JM. In situ imaging highlights local structural changes during heating: the case of meat. J Agric Food Chem. 2012a;60(18):4678–87.CrossRefGoogle Scholar
  44. 44.
    Bouhrara M, Lehallier B, Clerjon S, Damez JL, Bonny JM. Mapping of muscle deformation during heating: in situ dynamic MRI and nonlinear registration. Magn Reson Imaging. 2012b;30(3):422–30.CrossRefGoogle Scholar
  45. 45.
    Shaarani SM, Nott KP, Hall LD. Combination of NMR and MRI quantitation of structure and structure changes for convection cooking of fresh chicken meat. Meat Sci. 2006;72(3):398–403.CrossRefGoogle Scholar
  46. 46.
    Ishiwatari N, Fukuoka M, Sakai N. Effect of protein denaturation degree on texture and water state of cooked meat. J Food Eng. 2013;117(3):361–9. PubMed PMID: WOS:000319542500013.CrossRefGoogle Scholar
  47. 47.
    Portanguen S, Ikonic P, Clerjon S, Kondjoyan A. Mechanisms of crust development at the surface of beef meat subjected to hot air. Food Bioprocess Technol. 2014;7(11):11.CrossRefGoogle Scholar
  48. 48.
    Gaunt AP, Morris RH, Newton MI. Magnetic resonance imaging: a tool for pork pie development. Foods. 2013;2:7.CrossRefGoogle Scholar
  49. 49.
    Kerr WL, Kauten RJ, McCarthy MJ, Reid DS. Monitoring the formation of ice during food freezing by magnetic resonance imaging. Food Sci Technol Lebensm Wiss Technol. 1998;31(3):215–20. PubMed PMID: WOS:000074889100003.CrossRefGoogle Scholar
  50. 50.
    Vandecasteele J, De Deene Y. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources. Phys Med Biol. 2013;58(1):63–85. PubMed PMID: WOS:000312489800006. English.CrossRefGoogle Scholar
  51. 51.
    Bouhrara M, Bonny J-M. B1 mapping with selective pulses. Magn Reson Med. 2012;68(5):1472–80.CrossRefGoogle Scholar
  52. 52.
    Koizumi M, Naito S, Ishida N, Haishi T, Kano H. A dedicated MRI for food science and agriculture. Food Sci Technol Res. 2008;14(1):74–82. PubMed PMID: WOS:000253246400012. English.CrossRefGoogle Scholar
  53. 53.
    Mehta S, Melhorn SJ, Smeraglio A, Tyagi V, Grabowski T, Schwartz MW, et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am J Clin Nutr. 2012;96(5):989–99. PubMed PMID: WOS:000312949600007.CrossRefGoogle Scholar
  54. 54.
    Tang DW, Fellows LK, Small DM, Dagher A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav. 2012;106(3):317–24. PubMed PMID: WOS:000304742600003.CrossRefGoogle Scholar
  55. 55.
    Gruwel MLH, Latta P, Matwiy B, Tomanek B. Characterization of food stuffs using magnetic resonance elastography. Food Res Int. 2010;43(8):2087–92.CrossRefGoogle Scholar
  56. 56.
    Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 2012;25(6):852–8.CrossRefGoogle Scholar
  57. 57.
    Bouhrara M, Clerjon S, Damez JL, Chevarin C, Portanguen S, Kondjoyan A, Bonny JM. Dynamic MRI and Thermal Simulation To Interpret Deformation and Water Transfer in Meat during Heating. Journal of Agricultural and Food Chemistry. 2011;59(4):1229–1235.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INRA, AgroResonance - UR370 QuaPAAuvergne Rhône-AlpesSaint-Genès-Champanelle, Clermont-FerrandFrance

Personalised recommendations