TD NMR Relaxation Studies of Cereal Products

  • Geertrui M. Bosmans
  • Jan A. Delcour
Reference work entry


In this chapter, an overview is given about the main time domain (TD) proton nuclear magnetic resonance (1H NMR) transversal relaxation studies on cereal products. Because of the scope of this book, first an introduction is given on changes of the main biopolymers during baking and storage of wheat bread, one of the most studied cereal products. TD 1H NMR is an excellent technique to study the molecular mobility of water and biopolymers during processing and storage of cereal products including bread. Due to their complexity, starch-based model systems are often used to understand and interpret the complex NMR transversal relaxation time distributions of these products. Comparison of NMR relaxation data of the model systems and those of cereal products reveals that changes in proton mobility during processing and storage are largely caused by changes in the starch fraction, which is the main constituent of flour, and concomitant redistribution of water. Furthermore, a relationship exists between proton mobility on a molecular scale and the macroscopic textural properties of the food product, making TD 1H NMR transversal relaxometry a very suitable technique to predict product quality.


Cereal products Time domain proton nuclear magnetic resonance Bread Starch Proteins Baking Gelatinization Storage Retrogradation Molecular mobility Transversal relaxation times 


  1. 1.
    Delcour JA, Hoseney RC. Yeast-leavened products. Principles of cereal science and technology. 3rd ed. St. Paul: AACC International; 2010. p. 177–206.CrossRefGoogle Scholar
  2. 2.
    Wilderjans E, Luyts A, Brijs K, Delcour JA. Ingredient functionality in batter type cake making. Trends Food Sci Technol. 2013;30(1):6–15.CrossRefGoogle Scholar
  3. 3.
    Goesaert H, Slade L, Levine H, Delcour JA. Amylases and bread firming: an integrated view. J Cereal Sci. 2009;50:345–52.CrossRefGoogle Scholar
  4. 4.
    Pareyt B, Wilderjans E, Goesaert H, Brijs K, Delcour JA. The role of gluten in a sugar-snap cookie system: a model approach based on gluten–starch blends. J Cereal Sci. 2008;48(3):863–9.CrossRefGoogle Scholar
  5. 5.
    Pareyt B, Brijs K, Delcour JA. Impact of fat on dough and cookie properties of sugar-snap cookies. Cereal Chem. 2010;87(3):226–30.CrossRefGoogle Scholar
  6. 6.
    Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol. 2005;16(1–3):12–30.CrossRefGoogle Scholar
  7. 7.
    French D. Chemical and physical properties of starch. J Anim Sci. 1973;37(4):1048–61.CrossRefGoogle Scholar
  8. 8.
    Eliasson A-C, Gudmundsson M. Starch: physicochemical and functional aspects. In: Eliasson A-C, editor. Carbohydrates in food. New York: Marcel Dekker; 1996. p. 431–503.Google Scholar
  9. 9.
    Buléon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. Int J Biol Macromol. 1998;23(2):85–112.CrossRefGoogle Scholar
  10. 10.
    Tester RF, Karkalas J, Qi X. Starch – composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151–65.CrossRefGoogle Scholar
  11. 11.
    Gallant DJ, Bouchet B, Baldwin PM. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 1997;32(3–4):177–91.CrossRefGoogle Scholar
  12. 12.
    Bloksma AH. Dough structure, dough rheology, and baking quality. Cereal Foods World. 1990;35(2):237–44.Google Scholar
  13. 13.
    Shewry PR, Halford NG, Belton PS, Tatham AS. The structure and properties of gluten: an elastic protein from wheat grain. Philoso Trans R Soc B. 2002;357:133–42.CrossRefGoogle Scholar
  14. 14.
    Hug-Iten S, Handschin S, Conde-Petit B, Escher F. Changes in starch microstructure on baking and staling of wheat bread. LWT – Food Sci Technol. 1999;32(5):255–60.CrossRefGoogle Scholar
  15. 15.
    Lagrain B, Thewissen BG, Brijs K, Delcour JA. Impact of redox agents on the extractability of gluten proteins during bread making. J Agric Food Chem. 2007;55:5320–5.CrossRefGoogle Scholar
  16. 16.
    Colonna P, Buléon A. New insights on starch structure and properties. Cereal Chemistry and Technology: a long past and bright future. 9th international cereal and bread congress, Paris, France; 1992, pp. 25–42.Google Scholar
  17. 17.
    Biliaderis CG. Structural transitions and related physical properties of starch. In: Bemiller J, Whistler R, editors. Starch: chemistry and technology. 3rd ed. New York: Academic Press; 2009. p. 293–372.CrossRefGoogle Scholar
  18. 18.
    Jenkins PJ, Donald AM. Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res. 1998;308(1–2):133–47.CrossRefGoogle Scholar
  19. 19.
    Zobel HF, Kulp K. The staling mechanism. In: Hebeda RE, Zobel HF, editors. Baked goods freshness: technology, evaluation, and inhibition of staling. New York: Marcel Dekker; 1996. p. 1–64.Google Scholar
  20. 20.
    Lagrain B, Brijs K, Delcour JA. Reaction kinetics of gliadin-glutenin cross-linking in model systems and in bread making. J Agric Food Chem. 2008;56(22):10660–6.CrossRefGoogle Scholar
  21. 21.
    Lagrain B, Thewissen BG, Brijs K, Delcour JA. Mechanism of gliadin-glutenin cross-linking during hydrothermal treatment. Food Chem. 2008;107(2):753–60.CrossRefGoogle Scholar
  22. 22.
    Singh H, MacRitchie F. Changes in proteins induced by heating gluten dispersions at high temperature. J Cereal Sci. 2004;39(2):297–301.CrossRefGoogle Scholar
  23. 23.
    Lagrain B, Brijs K, Veraverbeke WS, Delcour JA. The impact of heating and cooling on the physico-chemical properties of wheat gluten-water suspensions. J Cereal Sci. 2005;42(3):327–33.CrossRefGoogle Scholar
  24. 24.
    Eliasson A-C, Larsson K. Cereals in breadmaking: a molecular colloidal approach. New York: Marcel Dekker; 1993.Google Scholar
  25. 25.
    Bushuk W. Distribution of water in dough and bread. The Baker’s Dig. 1966;40:38–40.Google Scholar
  26. 26.
    Bosmans GM, Lagrain B, Ooms N, Fierens E, Delcour JA. Biopolymer interactions, water dynamics and bread crumb firming. J Agric Food Chem. 2013;61(19):4646–54.CrossRefGoogle Scholar
  27. 27.
    Slade L, Levine H. Non-equilibrium melting of native granular starch. Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches. Carbohydr Polym. 1988;8:183–208.CrossRefGoogle Scholar
  28. 28.
    Slade L, Levine H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr. 1991;30(2–3):115–360.CrossRefGoogle Scholar
  29. 29.
    Kulp K, Ponte JG. Staling of white pan bread: fundamental causes. Crit Rev Food Sci Nutr. 1981;15:1–48.CrossRefGoogle Scholar
  30. 30.
    Willhoft EM. Bread staling. I. Experimental study. J Sci Food Agric. 1971;22(4):176–80.CrossRefGoogle Scholar
  31. 31.
    Willhoft EM. Bread staling. II. Theoretical study. J Sci Food Agric. 1971;22(4):180–3.CrossRefGoogle Scholar
  32. 32.
    Schoch TJ, French D. studies on bread staling. I. The role of starch. Cereal Chem. 1947;24:231–49.Google Scholar
  33. 33.
    Biliaderis CG. Structures and phase transitions of starch in food systems. Food Technol. 1992;46(6):98–109.Google Scholar
  34. 34.
    Ribotta PD, Cuffini S, León AE, Añón MC. The staling of bread: an X-ray diffraction study. Eur Food Res Technol. 2004;218(3):219–23.CrossRefGoogle Scholar
  35. 35.
    van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Annu Rep NMR Spectrosc. 2010;69:145–97.CrossRefGoogle Scholar
  36. 36.
    Witek M, Peemoeller H, Szymonska J, Blicharska B. Investigation of starch hydration by 2D time domain NMR. Acta Physica Pol-Series A Gen Phys. 2006;109(3):359–64.CrossRefGoogle Scholar
  37. 37.
    Le Botlan D, Rugraff Y, Martin C, Colonna P. Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy. Carbohydr Res. 1998;308(1–2):29–36.CrossRefGoogle Scholar
  38. 38.
    Tang H-R, Brun A, Hills B. A proton NMR relaxation study of the gelatinization and acid hydrolysis of native potato starch. Carbohydr Polym. 2001;46:7–18.CrossRefGoogle Scholar
  39. 39.
    Goetz J, Koehler P. Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT – Food Sci Technol. 2005;38(5):501–12.CrossRefGoogle Scholar
  40. 40.
    Kim YR, Cornillon P. Effects of temperature and mixing time on molecular mobility in wheat dough. Lebensm-Wiss -Technol Food Sci Technol. 2001;34(7):417–23.CrossRefGoogle Scholar
  41. 41.
    Ruan RR, Chen PL. Nuclear magnetic resonance techniques. In: Ruan RR, Chen PL, editors. Water in foods and biological materials: a nuclear magnetic resonance approach. Lancaster: Technomic Publishing Company; 1998. p. 1–50.Google Scholar
  42. 42.
    Schmidt SJ. Water mobility in foods. In: Barbosa-Canovas GV, Schmidt SJ, Labuza TP, editors. Water activity in foods: fundamentals and applications. Ames: Blackwell Publishing; 2007. p. 47–108.CrossRefGoogle Scholar
  43. 43.
    Engelsen SB, Jensen MK, Pedersen HT, Norgaard L, Munck L. NMR-baking and multivariate prediction of instrumental texture parameters in bread. J Cereal Sci. 2001;33(1):59–69.CrossRefGoogle Scholar
  44. 44.
    Todt H, Burk W, Guthausen G, Guthausen A, Kamlowski A, Schmalbein D. Quality control with time-domain NMR. Eur J Lipid Sci Technol. 2001;103(12):835–40.CrossRefGoogle Scholar
  45. 45.
    Kroeker RM, Mark Henkelman R. Analysis of biological NMR relaxation data with continuous distributions of relaxation times. J Magn Reson. 1986;69(2):218–35.Google Scholar
  46. 46.
    Forshult SE. Quantitative analysis with pulsed NMR and the CONTIN computer program. Report. Karlstad: Department of Physical Chemistry, Karlstad University; 2004.Google Scholar
  47. 47.
    Chinachoti P, Vittadini E, Chatakanonda P, Vodovotz Y. Characterization of molecular mobility in carbohydrate food systems by NMR. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2006. p. 1703–12.CrossRefGoogle Scholar
  48. 48.
    Tang H-R, Godward J, Hills B. The distribution of water in native starch granules – a multinuclear NMR study. Carbohydr Polym. 2000;43(4):375–87.CrossRefGoogle Scholar
  49. 49.
    Mariette F. Investigations of food colloids by NMR and MRI. Curr Opin Colloid Interface Sci. 2009;14(3):203–11.CrossRefGoogle Scholar
  50. 50.
    Witek M, Węglarz WP, de Jong L, van Dalen G, Blonk JCG, Heussen P, et al. The structural and hydration properties of heat-treated rice studied at multiple length scales. Food Chem. 2010;120(4):1031–40.CrossRefGoogle Scholar
  51. 51.
    Wang X, Choi SG, Kerr WL. Water dynamics in white bread and starch gels as affected by water and gluten content. LWT – Food Sci Technol. 2004;37(3):377–84.CrossRefGoogle Scholar
  52. 52.
    Bosmans GM, Lagrain B, Deleu LJ, Fierens E, Hills BP, Delcour JA. Assignments of proton populations in dough and bread using NMR relaxometry of starch, gluten, and flour model systems. J Agric Food Chem. 2012;60(21):5461–70.CrossRefGoogle Scholar
  53. 53.
    Ablett S. Overview of NMR applications in food science. Trends Food Sci Technol. 1992;3:246–50.CrossRefGoogle Scholar
  54. 54.
    Choi YJ, Kim B-Y, Baik M-Y. Analytical methodology for bread staling. J Korean Soc Appl Biol Chem. 2010;53(4):389–400.CrossRefGoogle Scholar
  55. 55.
    Gonera A, Cornillon P. Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM. Starch-Starke. 2002;54(11):508–16.CrossRefGoogle Scholar
  56. 56.
    Farhat IA, Ottenhof M-A, Marie V, de Bezenac E. 1H NMR relaxation study of amylopectin retrogradation. In: Belton PS, Gil AM, Webb GA, Rutledge D, editors. Magnetic resonance in food science: latest developments. Cambridge, UK: The Royal Society of Chemistry; 2003. p. 172–9.Google Scholar
  57. 57.
    Ritota M, Gianferri R, Bucci R, Brosio E. Proton NMR relaxation study of swelling and gelatinisation process in rice starch-water samples. Food Chem. 2008;110(1):14–22.CrossRefGoogle Scholar
  58. 58.
    Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. The glass transition of amylopectin measured by DSC. DMTA NMR Carbohydr Polym. 1992;18(2):77–88.CrossRefGoogle Scholar
  59. 59.
    Hills B, Costa A, Marigheto N, Wright K. T1-T2 NMR correlation studies of high-pressure-processed starch and potato tissue. Appl Magn Reson. 2005;28:13–27.CrossRefGoogle Scholar
  60. 60.
    Choi SG, Kerr WL. Effects of chemical modification of wheat starch on molecular mobility as studied by pulsed H-1 NMR. Lebensm Wiss Technol Food Sci Technol. 2003;36(1):105–12.CrossRefGoogle Scholar
  61. 61.
    Choi S-G, Kerr WL. 1H NMR studies of molecular mobility in wheat starch. Food Res Int. 2003;36(4):341–8.CrossRefGoogle Scholar
  62. 62.
    Tananuwong K, Reid DS. DSC and NMR relaxation studies of starch-water interactions during gelatinization. Carbohydr Polym. 2004;58(3):345–58.CrossRefGoogle Scholar
  63. 63.
    Rugraff YL, Desbois P, LeBotlan DJ. Quantitative analysis of wheat starch water suspensions by pulsed NMR spectroscopy measurements. Carbohydr Res. 1996;295:185–94.Google Scholar
  64. 64.
    Farhat IA, Blanshard JMV, Mitchell JR. The retrogradation of waxy maize starch extrudates: effects of storage temperature and water content. Biopolymers. 2000;53(5):411–22.CrossRefGoogle Scholar
  65. 65.
    Chatakanonda P, Dickinson LC, Chinachoti P. Mobility and distribution of water in cassava and potato starches by 1H and 2H NMR. J Agric Food Chem. 2003;51(25):7445–9 [Article].CrossRefGoogle Scholar
  66. 66.
    Bosmans GM, Pareyt B, Delcour JA. Non-additive response of blends of rice and potato starch during heating at intermediate water contents: a differential scanning calorimetry and proton nuclear magnetic resonance study. Food Chem. 2016;192:586–95.CrossRefGoogle Scholar
  67. 67.
    Roudaut G, Farhat I, Poirier-Brulez F, Champion D. Influence of water, temperature and sucrose on dynamics in glassy starch-based products studied by low field 1H NMR. Carbohydr Polym. 2009;77(3):489–95.CrossRefGoogle Scholar
  68. 68.
    Wang X, Choi SG, Kerr WL. Effect of gluten content on recrystallisation kinetics and water mobility in wheat starch gels. J Sci Food Agric. 2004;84(4):371–9.CrossRefGoogle Scholar
  69. 69.
    Farhat IA, Loisel E, Saez P, Derbyshire W, Blanshard JMV. The effect of sugars on the diffusion of water in starch gels: a pulsed field gradient NMR study. Int J Food Sci Technol. 1997;32(5):377–87.CrossRefGoogle Scholar
  70. 70.
    Le Botlan D, Desbois P. Starch retrogradation study in presence of sucrose by low-resolution nuclear magnetic resonance. Cereal Chem. 1995;72(2):191–3.Google Scholar
  71. 71.
    Chiotelli E, Pilosio G, Meste ML. Effect of sodium chloride on the gelatinization of starch: a multimeasurement study. Biopolymers. 2002;63(1):41–58.CrossRefGoogle Scholar
  72. 72.
    Ottenhof M-A, Farhat IA. The effect of gluten on the retrogradation of wheat starch. J Cereal Sci. 2004;40(3):269–74.CrossRefGoogle Scholar
  73. 73.
    Luyts A, Wilderjans E, Waterschoot J, Van Haesendonck I, Brijs K, Courtin C, et al. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients. Food Chem. 2013;139(1):120–8.CrossRefGoogle Scholar
  74. 74.
    Chatakanonda P, Chinachoti P, Sriroth K, Piyachomkwan K, Chotineeranat S, Tang H-R, et al. The influence of time and conditions of harvest on the functional behaviour of cassava starch – a proton NMR relaxation study. Carbohydr Polym. 2003;53(3):233–40.CrossRefGoogle Scholar
  75. 75.
    Rondeau-Mouro C, Cambert M, Kovrlija R, Musse M, Lucas T, Mariette F. Temperature-associated proton dynamics in wheat starch-based model systems and wheat flour dough evaluated by NMR. Food Bioprocess Technol. 2015;8(4):777–90.CrossRefGoogle Scholar
  76. 76.
    Bilbao-Sáinz C, Butler M, Weaver T, Bent J. Wheat starch gelatinization under microwave irradiation and conduction heating. Carbohydr Polym. 2007;69(2):224–32.CrossRefGoogle Scholar
  77. 77.
    Fan D, Ma S, Wang L, Zhao H, Zhao J, Zhang H, et al. 1H NMR studies of starch–water interactions during microwave heating. Carbohydr Polym. 2013;97(2):406–12.CrossRefGoogle Scholar
  78. 78.
    Teo CH, Seow CC. A pulsed NMR method for the study of starch retrogradation. Starch-Starke. 1992;44(8):288–92.CrossRefGoogle Scholar
  79. 79.
    Lu S, Chen J-J, Chen Y-K, Lii C-y, Lai P, Chen H-H. Water mobility, rheological and textural properties of rice starch gel. J Cereal Sci. 2011;53(1):31–6.CrossRefGoogle Scholar
  80. 80.
    Farhat IA, Blanshard JMV, Mitchell JR. Time domain 1H NMR: Its relevance to the processing and storage of starch systems. Adv Magn Reson Food Sci. 1999;231:280–8.CrossRefGoogle Scholar
  81. 81.
    Lionetto F, Maffezzoli A, Ottenhof M-A, Farhat IA, Mitchell JR. The retrogradation of concentrated wheat starch systems. Starch – Stärke. 2005;57(1):16–24.CrossRefGoogle Scholar
  82. 82.
    Assifaoui A, Champion D, Chiotelli E, Verel A. Characterization of water mobility in biscuit dough using a low-field 1H NMR technique. Carbohydr Polym. 2006;64(2):197–204.CrossRefGoogle Scholar
  83. 83.
    Doona CJ, Baik MY. Molecular mobility in model dough systems studied by time-domain nuclear magnetic resonance spectroscopy. J Cereal Sci. 2007;45(3):257–62.CrossRefGoogle Scholar
  84. 84.
    Leung HK, Magnuson JA, Bruinsma BL. Pulsed nuclear magnetic resonance study of water mobility in flour doughs. J Food Sci. 1979;44(5):1408–11.CrossRefGoogle Scholar
  85. 85.
    Leung HK, Magnuson JA, Bruinsma BL. Water binding of wheat flour doughs and breads as studied by deuteron relaxation. J Food Sci. 1983;48:95–9.CrossRefGoogle Scholar
  86. 86.
    Ruan RR, Wang XA, Chen PL, Fulcher RG, Pesheck P, Chakrabarti S. Study of water in dough using nuclear magnetic resonance. Cereal Chem. 1999;76(2):231–5.CrossRefGoogle Scholar
  87. 87.
    Esselink E, van Aalst H, Maliepaard M, Henderson TMH, Hoekstra NLL, van Duynhoven J. Impact of industrial dough processing on structure: a rheology, nuclear magnetic resonance, and electron microscopy study. Cereal Chem. 2003;80(4):419–23.CrossRefGoogle Scholar
  88. 88.
    Assifaoui A, Champion D, Chiotelli E, Verel A. Rheological behaviour of biscuit dough in relation to water mobility. Int J Food Sci Technol. 2006;41:124–8.CrossRefGoogle Scholar
  89. 89.
    Le Grand F, Cambert M, Mariette F. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes. J Agric Food Chem. 2007;55(26):10947–52.CrossRefGoogle Scholar
  90. 90.
    Roudaut G, van Dusschoten D, Van As H, Hemminga MA, LeMeste M. Mobility of lipids in low moisture bread as studied by NMR. J Cereal Sci. 1998;28(2):147–55.CrossRefGoogle Scholar
  91. 91.
    Lu Z, Seetharaman K. 1H Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) studies of water mobility in dough systems containing barley flour. Cereal Chem. 2013;90(2):120–6.CrossRefGoogle Scholar
  92. 92.
    Luyts A, Wilderjans E, Van Haesendonck I, Brijs K, Courtin C, Delcour J. Relative importance of moisture migration and amylopectin retrogradation for pound cake crumb firming. Food Chem. 2013;141(4):3960–6.CrossRefGoogle Scholar
  93. 93.
    Bosmans GM, Lagrain B, Fierens E, Delcour JA. The impact of baking time and bread storage temperature on bread crumb properties. Food Chem. 2013;141(4):3301–8.CrossRefGoogle Scholar
  94. 94.
    Bosmans GM, Lagrain B, Fierens E, Delcour JA. Impact of amylases on biopolymer dynamics during storage of straight-dough wheat bread. J Agric Food Chem. 2013;61(26):6525–32.CrossRefGoogle Scholar
  95. 95.
    Bosmans GM, Lagrain B, Ooms N, Fierens E, Delcour JA. Storage of parbaked bread affects shelf life of fully baked end product: a 1H NMR study. Food Chem. 2014;165:149–56.CrossRefGoogle Scholar
  96. 96.
    Curti E, Carini E, Bubici S, Baroni S, Vittadini E. Water molecular dynamics during bread staling by nuclear magnetic resonance. LWT – Food Sci Technol. 2011;44:854–9.CrossRefGoogle Scholar
  97. 97.
    Seow CC, Teo CH. Staling of starch-based products: a comparative study by firmness and pulsed NMR measurements. Starch – Stärke. 1996;48(3):90–3.CrossRefGoogle Scholar
  98. 98.
    Carini E, Curti E, Vittadini E. Effect of long-term storage on water status and physicochemical properties of nutritionally enhanced tortillas. Food Biophys. 2010;5(4):300–8.CrossRefGoogle Scholar
  99. 99.
    Chen PL, Long Z, Ruan R, Labuza TP. Nuclear magnetic resonance studies of water mobility in bread during storage. LWT – Food Sci Technol. 1997;30(2):178–83.CrossRefGoogle Scholar
  100. 100.
    Cornillon P, Salim LC. Characterization of water mobility and distribution in low- and intermediate-moisture food systems. Magn Reson Imaging. 2000;18(3):335–41.CrossRefGoogle Scholar
  101. 101.
    Farhat IA. Applications of NMR in the studies of starch systems. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2006. p. 1899–907.CrossRefGoogle Scholar
  102. 102.
    Hills BP, Godward J, Manning CE, Biechlin JL, Wright KM. Microstructural characterization of starch systems by NMR relaxation and Q-SPACE microscopy. Magn Reson Imaging. 1998;16(5–6):557–64.CrossRefGoogle Scholar
  103. 103.
    Lelievre J, Mitchell J. A pulsed NMR study of some aspects of starch gelatinization. Starch – Stärke. 1975;27(4):113–5.CrossRefGoogle Scholar
  104. 104.
    Lucas T, Wagner M, Quellec S, Davenel A. NMR Imaging of bread and biscuit. In: Webb GA, editor. Modern magnetic resonance. Dordrecht: Springer Netherlands; 2006. p. 1795–9.Google Scholar
  105. 105.
    Choi SG, Kerr WL. Water mobility and textural properties of native and hydroxypropylated wheat starch gels. Carbohydr Polym. 2003;51(1):1–8.CrossRefGoogle Scholar
  106. 106.
    Batey IL, Curtin BM. Effects of pasting viscosity of starch and flour from different operating conditions for the rapid visco analyser. Cereal Chem. 2000;77(6):754–60.CrossRefGoogle Scholar
  107. 107.
    Hager A-S, Bosmans GM, Delcour JA. Physical and molecular changes during the storage of gluten-free rice and oat bread. J Agric Food Chem. 2014;62(24):5682–9.CrossRefGoogle Scholar
  108. 108.
    Chiotelli E, Rolée A, Le Meste M. Effect of sucrose on the thermomechanical behavior of concentrated wheat and waxy corn starch-water preparations. J Agric Food Chem. 2000;48(4):1327–39.CrossRefGoogle Scholar
  109. 109.
    Gunaratne A, Ranaweera S, Corke H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydr Polym. 2007;70(1):112–22.CrossRefGoogle Scholar
  110. 110.
    Bean M, Yamazaki W. Wheat starch gelatinization in sugar solutions. I. Sucrose: microscopy and viscosity effects. Cereal Chem. 1978;55(6):936–44.Google Scholar
  111. 111.
    Savage H, Osman E. Effects of certain sugars and sugar alcohols on the swelling of cornstarch granules. Cereal Chem. 1978;64(4):240–3.Google Scholar
  112. 112.
    Donovan JW. A study of the baking process by differential scanning calorimetry. J Sci Food Agric. 1977;28(6):571–8.CrossRefGoogle Scholar
  113. 113.
    Wynne-Jones S, Blanshard JMV. Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance. Carbohydr Polym. 1986;6:289–306.CrossRefGoogle Scholar
  114. 114.
    Ablett S, Barnes DJ, Davies AP, Ingman SJ. 13C and pulse nuclear magnetic resonance spectroscopy of wheat proteins. J Cereal Sci. 1988;7:11–20.CrossRefGoogle Scholar
  115. 115.
    Goh KS, Bhat R, Karim AA. Probing the sol–gel transition of egg white proteins by pulsed-NMR method. Eur Food Res Technol. 2009;228(3):367–71.CrossRefGoogle Scholar
  116. 116.
    Indrawati L, Stroshine RL, Low-field NG, NMR. A tool for studying protein aggregation. J Sci Food Agric. 2007;87(12):2207–16.CrossRefGoogle Scholar
  117. 117.
    Esselink EF, van Aalst H, Maliepaard M, van Duynhoven JP. Long-term storage effect in frozen dough by spectroscopy and microscopy. Cereal Chem. 2003;80(4):396–403.CrossRefGoogle Scholar
  118. 118.
    Yi J, Kerr WL, Johnson JW. Effects of waxy wheat flour and water on frozen dough and bread properties. J Food Sci. 2009;74(5):E278–84.CrossRefGoogle Scholar
  119. 119.
    Wang P, Xu L, Nikoo M, Ocen D, Wu F, Yang N, et al. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: comparative studies on gluten-, glutenin- and gliadin-rich fractions. Food Hydrocoll. 2014;35:238–46.CrossRefGoogle Scholar
  120. 120.
    Kontogiorgos V, Goff HD. Calorimetric and microstructural investigation of frozen hydrated gluten. Food Biophys. 2006;1(4):202–15.CrossRefGoogle Scholar
  121. 121.
    Serial M, Canalis MB, Carpinella M, Valentinuzzi M, León A, Ribotta P, et al. Influence of the incorporation of fibers in biscuit dough on proton mobility characterized by time domain NMR. Food Chem. 2016;192:950–7.CrossRefGoogle Scholar
  122. 122.
    Sereno NM, Hill SE, Mitchell JR, Scharf U, Farhat IA. Probing water migration and mobility during the ageing of bread. In: Farhat IA, Belton PS, Webb GA, editors. Magnetic resonance in food science: from molecules to man. Cambridge: The Royal Society of Chemistry; 2007. p. 89–95.Google Scholar
  123. 123.
    Ruan RR, Almaer S, Huang VT, Perkins P, Chen PL, Fulcher RG. Relationship between firming and water mobility in starch-based food systems during storage. Cereal Chem. 1996;73(3):328–32.Google Scholar
  124. 124.
    Curti E, Carini E, Diantom A, Vittadini E. The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem. 2016;195:64–70.CrossRefGoogle Scholar
  125. 125.
    Curti E, Carini E, Tribuzio G, Vittadini E. Effect of bran on bread staling: physico-chemical characterization and molecular mobility. J Cereal Sci. 2015;65:25–30.CrossRefGoogle Scholar
  126. 126.
    Curti E, Carini E, Tribuzio G, Vittadini E. Bread staling: effect of gluten on physico-chemical properties and molecular mobility. LWT – Food Sci Technol. 2014;59(1):418–25.CrossRefGoogle Scholar
  127. 127.
    Kalichevsky M, Jaroszkiewicz E, Blanshard J. Glass transition of gluten. 1: gluten and gluten – sugar mixtures. Int J Biol Macromol. 1992;14(5):257–66.CrossRefGoogle Scholar
  128. 128.
    Gl R, Maglione M, van Dusschoten D, Le Meste M. Molecular mobility in glassy bread: a multispectroscopy approach. Cereal Chem. 1999;76(1):70–7.CrossRefGoogle Scholar
  129. 129.
    Ruan RR, Long Z, Song A, Chen PL. Determination of the glass transition temperature of food polymers using low field NMR. LWT – Food Sci Technol. 1998;31(6):516–21.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe) KU LeuvenLeuvenBelgium
  2. 2.Laboratory of Food Chemistry and Biochemistry, KU LeuvenHeverleeBelgium

Personalised recommendations