Advertisement

Applications of NMR Spectroscopy in FBDD

  • Matthew Bentley
  • Bradley C. Doak
  • Biswaranjan Mohanty
  • Martin J. Scanlon
Reference work entry

Abstract

Fragment-based drug design (FBDD) has become firmly established as a viable approach to the identification of starting points for the development of potent and selective compounds that modulate protein activity. As of 2017, the United States Food and Drug Administration have approved two molecules derived from FBDD for therapeutic use, many more are in advanced clinical trials, and the technology has been embraced by both academia and industry. The starting point for FBDD is the identification of very small molecules – “fragments” – that bind to a protein of interest. Due to their small size, fragments are able to sample chemical space more efficiently than larger molecules. This increases the likelihood of finding a “hit” – i.e., a fragment that binds to the desired protein. However, their small size also dictates that a fragment is likely to bind to its target protein with low affinity. For this reason, screening is generally carried out using biophysical binding assays rather than biochemical activity assays. Nuclear magnetic resonance (NMR) spectroscopy is an extremely powerful approach for detecting weak interactions. In fact the first implementation of FBDD employed NMR to characterize binding, and NMR remains a mainstay of many FBDD screening campaigns. NMR has a broader application in supporting programs of FBDD – it provides an essential component for quality control of the compounds in fragment screening libraries, it can be used to assess solubility, aggregation, and in addition to its role in screening to find fragment hits, it can be used to rank hits and assess their suitability for crystallographic structure determination in complex with a target protein. Where crystallography is not possible, several NMR-based approaches have been developed to determine structures of fragment-protein structures. In the current chapter we review these myriad applications of NMR in FBDD.

Keywords

Compound aggregation Library screening Structure modeling Ligand observed NMR Mixture design Protein detection WaterLOGSY spectra Fragment-based drug design 

References

  1. 1.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996;274:1531–4.CrossRefGoogle Scholar
  2. 2.
    Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15:605–19.CrossRefGoogle Scholar
  3. 3.
    Blomberg N, Cosgrove DA, Kenny PW, Kolmodin K. Design of compound libraries for fragment screening. J Comput Aided Mol Des. 2009;23:513–25.CrossRefGoogle Scholar
  4. 4.
    Boyd SM, Turnbull AP, Walse B. Fragment library design considerations. Wiley Interdiscip Rev-Comput Mol Sci. 2012;2:868–85.CrossRefGoogle Scholar
  5. 5.
    Chen IJ, Hubbard RE. Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des. 2009;23:603–20.CrossRefGoogle Scholar
  6. 6.
    Doak BC, Morton CJ, Simpson JS, Scanlon MJ. Design and evaluation of the performance of an NMR screening fragment library. Aust J Chem. 2013;66:1465–72.CrossRefGoogle Scholar
  7. 7.
    Lau WF, Withka JM, Hepworth D, Magee TV, Du YJ, Bakken GA, Miller MD, Hendsch ZS, Thanabal V, Kolodziej SA, Xing L, Hu Q, Narasimhan LS, Love R, Charlton ME, Hughes S, van Hoorn WP, Mills JE. Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. J Comput Aided Mol Des. 2011;25:621–36.CrossRefGoogle Scholar
  8. 8.
    Keserű GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD. Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. J Med Chem. 2016;59:8189–206.CrossRefGoogle Scholar
  9. 9.
    Bharti SK, Roy R. Quantitative 1H NMR spectroscopy. TrAC Trends Anal Chem. 2012;35:5–26.CrossRefGoogle Scholar
  10. 10.
    LaPlante SR, Carson R, Gillard J, Aubry N, Coulombe R, Bordeleau S, Bonneau P, Little M, O’Meara J, Beaulieu PL. Compound aggregation in drug discovery: implementing a practical NMR assay for medicinal chemists. J Med Chem. 2013;56:5142–50.CrossRefGoogle Scholar
  11. 11.
    Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR. 2001;21:349–59.CrossRefGoogle Scholar
  12. 12.
    Jordan JB, Poppe L, Xia X, Cheng AC, Sun Y, Michelsen K, Eastwood H, Schnier PD, Nixey T, Zhong W. Fragment based drug discovery: practical implementation based on 19F NMR spectroscopy. J Med Chem. 2012;55:678–87.CrossRefGoogle Scholar
  13. 13.
    Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Eng. 1999;38:1784–8.CrossRefGoogle Scholar
  14. 14.
    Jordan JB, Poppe L, Xia X, Cheng AC, Sun Y, Michelsen K, Eastwood H, Schnier PD, Nixey T, Zhong W. Fragment based drug discovery: practical implementation based on (1)(9)F NMR spectroscopy. J Med Chem. 2012;55:678–87.CrossRefGoogle Scholar
  15. 15.
    Hubbard RE, Davis B, Chen I, Drysdale MJ. The SeeDs approach: integrating fragments into drug discovery. Curr Top Med Chem. 2007;7:1568–81.CrossRefGoogle Scholar
  16. 16.
    Fielding L. NMR methods for the determination of protein-ligand dissociation constants. Curr Top Med Chem. 2003;3:39–53.CrossRefGoogle Scholar
  17. 17.
    Guan JY, Keizers PHJ, Liu WM, Lohr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal G. Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc. 2013;135:5859–68.CrossRefGoogle Scholar
  18. 18.
    Shah DM, Ab E, Diercks T, Hass MAS, van Nuland NAJ, Siegal G. Rapid protein-ligand costructures from sparse NOE data. J Med Chem. 2012;55:10,786–90.CrossRefGoogle Scholar
  19. 19.
    Mohanty B, Williams ML, Doak BC, Vazirani M, Ilyichova O, Wang G, Bermel W, Simpson JS, Chalmers DK, King GF, Mobli M, Scanlon MJ. Determination of ligand binding modes in weak protein-ligand complexes using sparse NMR data. J Biomol NMR. 2016;66:195–208.CrossRefGoogle Scholar
  20. 20.
    Davis BJ, Erlanson DA. Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett. 2013;23:2844–52.CrossRefGoogle Scholar
  21. 21.
    Gossert AD, Jahnke W. NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc. 2016;97:82–125.CrossRefGoogle Scholar
  22. 22.
    Irwin JJ, Duan D, Torosyan H, Doak AK, Ziebart KT, Sterling T, Tumanian G, Shoichet BK. An aggregation advisor for ligand discovery. J Med Chem. 2015;58:7076–87.CrossRefGoogle Scholar
  23. 23.
    Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J, Bountra C, Brennan PE, Brown PJ, Bunnage ME, Buser-Doepner C, Campbell RM, Carter AJ, Cohen P, Copeland RA, Cravatt B, Dahlin JL, Dhanak D, Edwards AM, Frederiksen M, Frye SV, Gray N, Grimshaw CE, Hepworth D, Howe T, Huber KV, Jin J, Knapp S, Kotz JD, Kruger RG, Lowe D, Mader MM, Marsden B, Mueller-Fahrnow A, Muller S, O’Hagan RC, Overington JP, Owen DR, Rosenberg SH, Roth B, Ross R, Schapira M, Schreiber SL, Shoichet B, Sundstrom M, Superti-Furga G, Taunton J, Toledo-Sherman L, Walpole C, Walters MA, Willson TM, Workman P, Young RN, Zuercher WJ. The promise and peril of chemical probes. Nat Chem Biol. 2015;11:536–41.CrossRefGoogle Scholar
  24. 24.
    Arroyo X, Goldflam M, Feliz M, Belda I, Giralt E. Computer-aided design of fragment mixtures for NMR-based screening. PLoS One. 2013;8:e58571.CrossRefGoogle Scholar
  25. 25.
    Stark JL, Eghbalnia HR, Lee W, Westler WM, Markley JL. NMRmix: a tool for the optimization of compound mixtures in 1D 1H NMR ligand affinity screens. J Proteome Res. 2016;15:1360–8.CrossRefGoogle Scholar
  26. 26.
    Lepre CA. Practical aspects of NMR-based fragment screening. Methods Enzymol. 2011;493:219–39.CrossRefGoogle Scholar
  27. 27.
    Peng C, Frommlet A, Perez M, Cobas C, Blechschmidt A, Dominguez S, Lingel A. Fast and efficient fragment-based lead generation by fully automated processing and analysis of ligand-observed NMR binding data. J Med Chem. 2016;59:3303–10.CrossRefGoogle Scholar
  28. 28.
    Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR. 2000;18:65–8.CrossRefGoogle Scholar
  29. 29.
    Mashalidis EH, Śledź P, Lang S, Abell C. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat Protoc. 2013;8:2309–24.CrossRefGoogle Scholar
  30. 30.
    Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.CrossRefGoogle Scholar
  31. 31.
    Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630.CrossRefGoogle Scholar
  32. 32.
    Hubbard RE, Murray JB. Experiences in fragment-based lead discovery. Methods Enzymol. 2011;493:509–31.CrossRefGoogle Scholar
  33. 33.
    Ge X, MacRaild CA, Devine SM, Debono CO, Wang G, Scammells PJ, Scanlon MJ, Anders RF, Foley M, Norton RS. Ligand-induced conformational change of Plasmodium falciparum AMA1 detected using 19F NMR. J Med Chem. 2014;57:6419–27.CrossRefGoogle Scholar
  34. 34.
    Leung EWW, Mulcair MD, Yap BK, Nicholson SE, Scanlon MJ, Norton RS. Molecular insights into the interaction between the SPRY domain-containing SOCS box protein SPSB2 and peptides based on the binding motif from iNOS. Aust J Chem. 2017;70:191–200.CrossRefGoogle Scholar
  35. 35.
    Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today. 2004;9:430–1.CrossRefGoogle Scholar
  36. 36.
    Hopkins AL, Keseru GM, Leeson PD, Rees DC, Reynolds CH. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014;13:105–21.CrossRefGoogle Scholar
  37. 37.
    Murray CW, Erlanson DA, Hopkins AL, Keseru GM, Leeson PD, Rees DC, Reynolds CH, Richmond NJ. Validity of ligand efficiency metrics. ACS Med Chem Lett. 2014;5:616–8.CrossRefGoogle Scholar
  38. 38.
    Ziarek JJ, Peterson FC, Lytle BL, Volkman BF. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol. 2011;493:241–75.CrossRefGoogle Scholar
  39. 39.
    Ferenczy GG, Keserű GM. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J Med Chem. 2013;56:2478–86.CrossRefGoogle Scholar
  40. 40.
    Jahnke W. Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. J Biomol NMR. 2007;39:87–90.CrossRefGoogle Scholar
  41. 41.
    Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc. 2004;126:2390–8.CrossRefGoogle Scholar
  42. 42.
    John M, Pintacuda G, Park AY, Dixon NE, Otting G. Structure determination of protein-ligand complexes by transferred paramagnetic shifts. J Am Chem Soc. 2006;126:2390–8; 128:12910–6.Google Scholar
  43. 43.
    Guan JY, Keizers PH, Liu WM, Lohr F, Skinner SP, Heeneman EA, Schwalbe H, Ubbink M, Siegal G. Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc. 2013;126:2390–8; 135:5859–68.Google Scholar
  44. 44.
    Aguirre C, ten Brink T, Cala O, Guichou JF, Krimm I. Protein-ligand structure guided by backbone and side-chain proton chemical shift perturbations. J Biomol NMR. 2014;60:147–56.CrossRefGoogle Scholar
  45. 45.
    Stark J, Powers R. Rapid protein-ligand costructures using chemical shift perturbations. J Am Chem Soc. 2008;126:2390–8; 130:535–45.Google Scholar
  46. 46.
    Yu Z, Li P, Merz Jr KM. Using ligand-induced protein chemical shift perturbations to determine protein-ligand structures. Biochemistry. 2017;56:2349–62.CrossRefGoogle Scholar
  47. 47.
    Shah DM, AB E, Diercks T, Hass MA, van Nuland NA, Siegal G. Rapid protein-ligand costructures from sparse NOE data. J Med Chem. 2012;55:10,786–90.CrossRefGoogle Scholar
  48. 48.
    Mohanty B, Rimmer K, McMahon RM, Headey SJ, Vazirani M, Shouldice SR, Coincon M, Tay S, Morton CJ, Simpson JS, Martin JL, Scanlon MJ. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. PLoS One. 2017;12:e0173436.CrossRefGoogle Scholar
  49. 49.
    Orts J, Walti MA, Marsh M, Vera L, Gossert AD, Guntert P, Riek R. NMR-based determination of the 3D structure of the ligand-protein interaction site without protein resonance assignment. J Am Chem Soc. 2016;126:2390–8; 138:4393–400.Google Scholar
  50. 50.
    Walti MA, Riek R, Orts J. Fast NMR-based determination of the 3D structure of the binding site of protein-ligand complexes with weak affinity binders. Angew Chem Int Ed Eng. 2017;56:5208–11.CrossRefGoogle Scholar
  51. 51.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11:873–86.CrossRefGoogle Scholar
  52. 52.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthew Bentley
    • 1
  • Bradley C. Doak
    • 1
  • Biswaranjan Mohanty
    • 1
  • Martin J. Scanlon
    • 1
  1. 1.Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia

Personalised recommendations