Targeting G-quadruplex with Small Molecules: An NMR View

  • Irene Bessi
  • Julia Wirmer-Bartoschek
  • Jyotirmayee Dash
  • Harald Schwalbe
Reference work entry

Abstract

G-quadruplexes are emerging as important drug targets in anticancer research. They possess a remarkable structural polymorphism in solution, making NMR spectroscopy a unique tool to investigate structure and dynamics of this class of biomolecules. Here, an overview of G-quadruplex (G4) structural polymorphism and NMR structures in the holo and apo state is given, as well as state-of-the-art NMR methods to investigate G4-ligand interactions. The choice of methods strongly depends on the exchange regime in which a ligand is binding, which is presented in detail. Another focus is given to the assignment of G4-ligand complexes to enable structure calculation. The number of NMR structures of ligands bound to G4 is still scarce: while there is evidence for ligands binding to the groove of G4s, most of the G4-ligand NMR structures reported to date show the ligand stacking on a terminal G-quartet. Further, in the presence of 3′- and 5′-flanking nucleotides forming capping structures, major structural changes in these regions are observed to accommodate the ligand, highlighting the importance of structural data to enable rational drug design. The data presented in this review highlight the importance of investigating this class of complexes and provide useful tools for structure-based drug design.

Keywords

G-quadruplex Small molecules Polymorphism Molecular recognition Conformational selection Induced-fit Fast exchange regime Intermediate exchange regime Slow exchange regime Assignment of G4s 

References

  1. 1.
    Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43(18):8627–37.CrossRefGoogle Scholar
  2. 2.
    Brooks TA, Kendrick S, Hurley L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010;277(17):3459–69.CrossRefGoogle Scholar
  3. 3.
    Monchaud D, Teulade-Fichou MP. A hitchhiker’s guide to G-quadruplex ligands. Org Biomol Chem. 2008;6(4):627–36.CrossRefGoogle Scholar
  4. 4.
    Ohnmacht SA, Neidle S. Small-molecule quadruplex-targeted drug discovery. Bioorg Med Chem Lett. 2014;24(12):2602–12.CrossRefGoogle Scholar
  5. 5.
    Søndergaard S, Aznauryan M, Haustrup EK, Schiøtt B, Birkedal V, Corry B. Dynamics of fluorescent dyes attached to G-quadruplex DNA and their effect on FRET experiments. ChemPhysChem. 2015;16(12):2562–70.CrossRefGoogle Scholar
  6. 6.
    Cuenca F, Greciano O, Gunaratnam M, Haider S, Munnur D, Nanjunda R, Wilson WD, Neidle S. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg Med Chem Lett. 2008;18(5):1668–73.CrossRefGoogle Scholar
  7. 7.
    Micco M, Collie GW, Dale AG, Ohnmacht SA, Pazitna I, Gunaratnam M, Reszka AP, Neidle S. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J Med Chem. 2013;56:2959–74.CrossRefGoogle Scholar
  8. 8.
    Martino M, Virno A, Pagano B, Virgilio A, Di Micco S, Galeone A, Giancola C, Bifulco G, Mayol L, Randazzo A. Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4. J Am Chem Soc. 2007;129(51):16048–56.CrossRefGoogle Scholar
  9. 9.
    Cosconati S, Marinelli L, Trotta R, Virno A, De Tito S, Romagnoli R, Pagano B, Limongelli V, Giancola C, Baraldi PG, Mayol L, Novellino E, Randazzo A. Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle. J Am Chem Soc. 2010;132(18):6425–33.CrossRefGoogle Scholar
  10. 10.
    Li Q, Xiang J, Li X, Chen L, Xu X, Tang Y, Zhou Q, Li L, Zhang H, Sun H, Guan A, Yang Q, Yang S, Xu G. Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. Biochimie. 2009;91(7):811–9.CrossRefGoogle Scholar
  11. 11.
    Dai J, Carver M, Hurley LH, Yang D. Solution structure of a 2:1 quindoline–c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J Am Chem Soc. 2011;133(44):17673–80.CrossRefGoogle Scholar
  12. 12.
    Kotar A, Wang B, Shivalingam A, Gonzalez-Garcia J, Vilar R, Plavec J. NMR structure of a triangulenium-based long-lived fluorescence probe bound to a G-quadruplex. Angew Chem Int Ed Eng. 2016;55(40):12508–11.CrossRefGoogle Scholar
  13. 13.
    Wirmer-Bartoschek J, Bendel LE, Jonker HRA, Grün JT, Papi F, Bazzicalupi C, Messori L, Gratteri P, Schwalbe H. NMR solution structure of a ligand/hybrid-2-G-quadruplex complex reveals structural rearrangements that facilitate ligand binding. Angew Chem Int Ed Engl. 2017; 56(25):7102–7106.Google Scholar
  14. 14.
    Phan AT, Kuryavyi V, Gaw HY, Patel DJ. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol. 2005;1(3):167–73.CrossRefGoogle Scholar
  15. 15.
    Chung WJ, Heddi B, Hamon F, Teulade-Fichou MP, Phan AT. Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC(3). Angew Chem Int Ed Eng. 2014;53(4):999–1002.CrossRefGoogle Scholar
  16. 16.
    Wilson T, Costa PJ, Félix V, Williamson MP, Thomas JA. Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an antiparallel folded human telomere sequence. J Med Chem. 2103;56(21):8674–83.CrossRefGoogle Scholar
  17. 17.
    Chung WJ, Heddi B, Tera M, Iida K, Nagasawa K, Phan AT. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J Am Chem Soc. 2013;135(36):13495–501.CrossRefGoogle Scholar
  18. 18.
    Li X, Zheng K, Zhang J, Liu H, He Y, Yuan B, Hao Y, Tan Z. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA. 2015;112(47):14581–6.CrossRefGoogle Scholar
  19. 19.
    Heddi B, Martín-Pintado N, Serimbetov Z, Kari TMA, Phan AT. G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res. 2016;44(2):910–6.CrossRefGoogle Scholar
  20. 20.
    Nasiri AH, Wurm JP, Immer C, Weickhmann AK, Wöhnert J. An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA. 2016;22(11):1750–9.CrossRefGoogle Scholar
  21. 21.
    Bessi I, Jonker HRA, Richter C, Schwalbe H. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew Chem Int Ed Eng. 2015;54(29):8444–8.CrossRefGoogle Scholar
  22. 22.
    Bončina M, Podlipnik Č, Piantanida I, Eilmes J, Teulade-Fichou MP, Vesnaver G, Lah J. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes. Nucleic Acids Res. 2015;43(21):10376–86.Google Scholar
  23. 23.
    Panda D, Debnath M, Mandal S, Bessi I, Schwalbe H, Dash J. A nucleus-imaging probe that selectively stabilizes a minor conformation of c-MYC G-quadruplex and down-regulates c-MYC transcription in human cancer cells. Sci Rep. 2015;5:13183.CrossRefGoogle Scholar
  24. 24.
    Ambrus A, Chen D, Dai J, Jones RA, Yang D. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 2005;44(6):2048–58.CrossRefGoogle Scholar
  25. 25.
    Dai JX, Carver M, Punchihewa C, Jones RA, Yang D. Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res. 2007;35(15):4927–40.CrossRefGoogle Scholar
  26. 26.
    Wang ZF, Li MH, Chen WW, Hsu STD, Chang TCA. Novel transition pathway of ligand-induced topological conversion from hybrid forms to parallel forms of human telomeric G-quadruplexes. Nucleic Acids Res. 2016;44(8):3958–68.CrossRefGoogle Scholar
  27. 27.
    Bessi I, Bazzicalupi C, Richter C, Jonker HRA, Saxena K, Sissi C, Chioccioli M, Bianco S, Bilia AR, Schwalbe H, Gratteri P. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-quadruplex DNA. ACS Chem Biol. 2012;7(6):1109–19.CrossRefGoogle Scholar
  28. 28.
    Henker J, Wirmer-Bartoschek J, Bendel LE, Xiang Y, Fu C, Harms K, Schwalbe H, Meggers E. Progress in the synthesis and bioactivity of hexacoordinate silicon(IV) complexes. Eur J Inorg Chem. 2016;2016(32):5161–70.CrossRefGoogle Scholar
  29. 29.
    Seršen S, Šket P, Plavec J, Turel I. Interactions of two cytotoxic organoruthenium(II) complexes with G-quadruplex. J Inorg Biochem. 2016;160:70–7.CrossRefGoogle Scholar
  30. 30.
    Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure. 1993;1(4):263–82.CrossRefGoogle Scholar
  31. 31.
    Dai JX, Punchihewa C, Ambrus A, Chen D, Jones RA, Yang D. Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. Nucleic Acids Res. 2007;35(7):2440–50.CrossRefGoogle Scholar
  32. 32.
    Dash J, Shirude PS, Hsu STD, Balasubramanian S. Diarylethynyl amides that recognize the parallel conformation of genomic promoter DNA G-quadruplexes. J Am Chem Soc. 2008;130(47):15950–6.CrossRefGoogle Scholar
  33. 33.
    Linge JP, O′Donoghue SI, Nilges M. Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol. 2001;339:71–90.CrossRefGoogle Scholar
  34. 34.
    Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125(7):1731–7.CrossRefGoogle Scholar
  35. 35.
    Ferner J, Suhartono M, Breitung S, Jonker HRA, Hennig M, Wöhnert J, Göbel M, Schwalbe H. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. ChemBioChem. 2009;10(9):1490–4.CrossRefGoogle Scholar
  36. 36.
    Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed. 2003;42(8):864–90.CrossRefGoogle Scholar
  37. 37.
    Garavís M, López-Méndez B, Somoza A, Oyarzabal J, Dalvit C, Villasante A, Campos-Olivas R, González C. Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19F-NMR based fragment screening. ACS Chem Biol. 2014;9(7):1559–66.CrossRefGoogle Scholar
  38. 38.
    Tawani A, Kumar A. Structural insight into the interaction of flavonoids with human telomeric sequence. Sci Rep. 2015;5:17574.CrossRefGoogle Scholar
  39. 39.
    Phan AT, Patel DJ. A site-specific low-enrichment (15)N,(13)C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. J Am Chem Soc. 2002;124(7):1160–1.CrossRefGoogle Scholar
  40. 40.
    Lim KW, Ng VC, Martín-Pintado N, Heddi B, Phan AT. Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013;41(22):10556–62.CrossRefGoogle Scholar
  41. 41.
    Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A, Ilin S, Raslin T, Polonskaia A, Chen C, Clain D, Darnell RB, Patel DJ. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol. 2011;18(7):796–804.CrossRefGoogle Scholar
  42. 42.
    Marusic M, Šket P, Bauer L, Viglasky V, Plavec J. Solution-state structure of an intramolecular G-quadruplex with propeller, diagonal and edgewise loops. Nucleic Acids Res. 2012;40(14):6946–56.CrossRefGoogle Scholar
  43. 43.
    Breeze AL. Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog Nucl Magn Reson Spectrosc. 2000;36(4):323–72.CrossRefGoogle Scholar
  44. 44.
    Phan AT. Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J Biomol NMR. 2000;16(2):175–8.CrossRefGoogle Scholar
  45. 45.
    Kellogg G, Schweitzer B. Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribonucleotides. J Biomol NMR. 1993;3(5):577–95.CrossRefGoogle Scholar
  46. 46.
    Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc. 2006;128(4):1096–8.CrossRefGoogle Scholar
  47. 47.
    Greene KL, Wang Y, Live D. Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: investigations of G-tetrad models with alternating syn and anti bases. J Biomol NMR. 1995;5(4):333–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Irene Bessi
    • 1
  • Julia Wirmer-Bartoschek
    • 1
  • Jyotirmayee Dash
    • 2
  • Harald Schwalbe
    • 1
  1. 1.Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Organic ChemistryIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations