Peptide Toxin Structure and Function by NMR

  • Raymond S. Norton
Reference work entry


Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors and as such are of significant interest to the pharmaceutical and biotech industries as both therapeutic leads and pharmacological tools. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. This Chapter describes the application of solution-state NMR to studies of peptide structure and dynamics. The requirements for sample preparation and the types of experiments commonly used to obtain NMR-based restraints for structure determination are discussed, as are cautions regarding the definition of disulfide connectivities and the interpretation of NMR data on peptides lacking ordered structure or containing significant regions of disorder. All of these studies are enhanced by the use of peptides labelled with stable isotopes, which can also be used in NMR relaxation studies to obtain valuable information on peptide dynamics over a range of timescales. Examples of several peptide toxin structures determined on the basis of NMR data are presented in order to illustrate the typical features of such structures and the functional correlates that can be inferred.


Peptide Toxin Structure Dynamics Relaxation Resonance assignments Secondary structure Automation Isotope labelling Water suppression Mutation Disulfide bonds Micelles Bicelles 



The work from the author’s laboratory was supported by a fellowship from the Australian National Health and Medical Research Council and grants from the Australian Research Council. I thank Eleanor Leung, Bankala Krishnarjuna and Indu Chandrashekaran for helpful comments.


  1. 1.
    Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, et al. From mollusks to medicine: a venomics approach for the discovery and characterization of therapeutics from Terebridae peptide toxins. Toxins. 2016;8:117.CrossRefGoogle Scholar
  2. 2.
    Durek T, Craik DJ. Therapeutic conotoxins: a US patent literature survey. Expert Opin Ther Pat. 2015;25:1159–73.CrossRefGoogle Scholar
  3. 3.
    Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF. Spider venomics: implications for drug discovery. Future Med Chem. 2014;6:1699–714.CrossRefGoogle Scholar
  4. 4.
    King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469–84.CrossRefGoogle Scholar
  5. 5.
    Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375:1569–77.CrossRefGoogle Scholar
  6. 6.
    Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, et al. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59:529–46.CrossRefGoogle Scholar
  7. 7.
    Pallaghy PK, He W, Jimenez EC, Olivera BM, Norton RS. Structures of the contryphan family of cyclic peptides. Role of electrostatic interactions in cis-trans isomerism. Biochemistry. 2000;39:12845–52.CrossRefGoogle Scholar
  8. 8.
    Wüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol. 1982;155:311–9.CrossRefGoogle Scholar
  9. 9.
    Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.Google Scholar
  10. 10.
    Schubert M, Labudde D, Oschkinat H, Schmieder P. A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR. 2002;24:149–54.CrossRefGoogle Scholar
  11. 11.
    Zhang H, van Ingen H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol. 2016;38:75–82.CrossRefGoogle Scholar
  12. 12.
    Chang SC, Galea CA, Leung EW, Tajhya RB, Beeton C, Pennington MW, et al. Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria. Toxicon. 2012;60:840–50.CrossRefGoogle Scholar
  13. 13.
    Ishida H, Nguyen LT, Gopal R, Aizawa T, Vogel HJ. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J Am Chem Soc. 2016;138:11318–26.CrossRefGoogle Scholar
  14. 14.
    Klint JK, Senff S, Saez NJ, Seshadri R, Lau HY, Bende NS, et al. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One. 2013;8(5):e63865.CrossRefGoogle Scholar
  15. 15.
    Tochio N, Umehara T, Nakabayashi K, Yoneyama M, Tsuda K, Shirouzu M, et al. Solution structures of the DNA-binding domains of immune-related zinc-finger protein ZFAT. J Struct Funct Genomics. 2015;16(2):55–65.CrossRefGoogle Scholar
  16. 16.
    Aceti DJ, Bingman CA, Wrobel RL, Frederick RO, Makino S, Nichols KW, et al. Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies. J Struct Funct Genomics. 2015;16(2):67–80.CrossRefGoogle Scholar
  17. 17.
    Norton RS, Leung EW, Chandrashekaran IR, MacRaild CA. Applications of 19F-NMR in fragment-based drug discovery. Molecules. 2016;21:860.CrossRefGoogle Scholar
  18. 18.
    Rashid MH, Huq R, Tanner MR, Chhabra S, Khoo KK, Estrada R, et al. A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases. Sci Rep. 2014;4:4509.CrossRefGoogle Scholar
  19. 19.
    Bankala K, Suguki T, Morales RAV, Seow J, Fujiwara T, Wilde KL, et al. Dissecting the fuzzy interactions responsible for the strain-specific recognition of a conserved malaria epitope. Submitted. 2017.Google Scholar
  20. 20.
    Jamasbi E, Mularski A, Separovic F. Model membrane and cell studies of antimicrobial activity of melittin analogues. Curr Top Med Chem. 2016;16(1):40–5.CrossRefGoogle Scholar
  21. 21.
    MacRaild CA, Pedersen MO, Anders RF, Norton RS. Lipid interactions of the malaria antigen merozoite surface protein 2. Biochim Biophys Acta. 2012;1818(11):2572–8.CrossRefGoogle Scholar
  22. 22.
    Lau CH, King GF, Mobli M. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels. Sci Rep. 2016;6:34333.CrossRefGoogle Scholar
  23. 23.
    Liebau J, Ye W, Mäler L. Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR. Magn Reson Chem. 2015. [Epub ahead of print] PMID: 26662467
  24. 24.
    Bayburt TH, Sligar SG. Membrane protein assembly into Nanodiscs. FEBS Lett. 2010;584:1721–7.CrossRefGoogle Scholar
  25. 25.
    Hagn F, Etzkorn M, Raschle T, Wagner G. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc. 2013;135(5):1919–25.CrossRefGoogle Scholar
  26. 26.
    Yao S, Howlett GJ, Norton RS. Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements. J Biomol NMR. 2000;16(2):109–19.CrossRefGoogle Scholar
  27. 27.
    Wagner G, Neuhaus D, Worgotter E, Vasak M, Kagi JH, Wüthrich K. Nuclear magnetic resonance identification of “half-turn” and 310-helix secondary structure in rabbit liver metallothionein-2. J Mol Biol. 1986;187(1):131–5.CrossRefGoogle Scholar
  28. 28.
    Wüthrich K, Billeter M, Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984;180:715–40.CrossRefGoogle Scholar
  29. 29.
    Drane S, Robinson SD, MacRaild CA, Chhabra S, Chittoor B, Morales RAV, et al. Structure and activity of contryphan-Vc2: importance of the D-amino acid residue. Toxicon. 2017;accepted for publication. PMID: 28216409Google Scholar
  30. 30.
    Bax A, Davis DG. Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson. 1985;63(1):207–13.Google Scholar
  31. 31.
    Kanelis V, Forman-Kay JD, Kay LE. Multidimensional NMR methods for protein structure determination. IUBMB Life. 2001;52:291–302.CrossRefGoogle Scholar
  32. 32.
    Guntert P. Automated structure determination from NMR spectra. Eur Biophys J. 2009;38:129–43.CrossRefGoogle Scholar
  33. 33.
    Mobli M, Hoch JC. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Reson Spectrosc. 2014;83:21–41.CrossRefGoogle Scholar
  34. 34.
    Piotto M, Saudek V, Sklenar V. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR. 1992;2(6):661–5.CrossRefGoogle Scholar
  35. 35.
    Hwang TL, Shaka AJ. Water suppression that works – excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A. 1995;112(2):275–9.CrossRefGoogle Scholar
  36. 36.
    Khoo KK, Feng ZP, Smith BJ, Zhang MM, Yoshikami D, Olivera BM, et al. Structure of the analgesic μ-conotoxin KIIIA and effects on the structure and function of disulfide deletion. Biochemistry. 2009;48(6):1210–9.CrossRefGoogle Scholar
  37. 37.
    Khoo KK, Gupta K, Green BR, Zhang MM, Watkins M, Olivera BM, et al. Distinct disulfide isomers of μ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry. 2012;51:9826–35.CrossRefGoogle Scholar
  38. 38.
    Kuang Z, Zhang MM, Gupta K, Gajewiak J, Gulyas J, Balaram P, et al. Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency. ACS Chem Biol. 2013;8:1344–51.CrossRefGoogle Scholar
  39. 39.
    Mobli M, King GF. NMR methods for determining disulfide-bond connectivities. Toxicon. 2010;56(6):849–54.CrossRefGoogle Scholar
  40. 40.
    Poppe L, Hui JO, Ligutti J, Murray JK, Schnier PD. PADLOC: a powerful tool to assign disulfide bond connectivities in peptides and proteins by NMR spectroscopy. Anal Chem. 2012;84(1):262–6.CrossRefGoogle Scholar
  41. 41.
    Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990;36(2):147–55.CrossRefGoogle Scholar
  42. 42.
    Kumar A, Wagner G, Ernst RR, Wüthrich K. Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic-resonance spectroscopy – implications for studies of protein conformation. J Am Chem Soc. 1981;103(13):3654–8.CrossRefGoogle Scholar
  43. 43.
    Buczek O, Wei D, Babon JJ, Yang X, Fiedler B, Chen P, et al. Structure and sodium channel activity of an excitatory I1-superfamily conotoxin. Biochemistry. 2007;46(35):9929–40.CrossRefGoogle Scholar
  44. 44.
    Wagner G, Braun W, Havel TF, Schaumann T, Go N, Wüthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol. 1987;196(3):611–39.CrossRefGoogle Scholar
  45. 45.
    Baxter NJ, Williamson MP. Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR. 1997;9(4):359–69.CrossRefGoogle Scholar
  46. 46.
    Cordier F, Nisius L, Dingley AJ, Grzesiek S. Direct detection of N-H[…]O=C hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc. 2008;3(2):235–41.CrossRefGoogle Scholar
  47. 47.
    Prestegard JH. New techniques in structural NMR – anisotropic interactions. Nat Struct Biol. 1998;5 Suppl:517–22.CrossRefGoogle Scholar
  48. 48.
    Otting G. Protein NMR using paramagnetic ions. Annu Rev Biophys. 2010;39:387–405.CrossRefGoogle Scholar
  49. 49.
    Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR. 2015;62(4):453–71.CrossRefGoogle Scholar
  50. 50.
    Schwieters CD, Kuszewski JJ, Clore GM. Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc. 2006;48(1):47–62.CrossRefGoogle Scholar
  51. 51.
    Pallaghy PK, Melnikova AP, Jimenez EC, Olivera BM, Norton RS. Solution structure of contryphan-R, a naturally occurring disulfide-bridged octapeptide containing D-tryptophan: comparison with protein loops. Biochemistry. 1999;38(35):11553–9.CrossRefGoogle Scholar
  52. 52.
    Lopez-Mendez B, Güntert P. Automated protein structure determination from NMR spectra. J Am Chem Soc. 2006;128(40):13112–22.CrossRefGoogle Scholar
  53. 53.
    Dashti H, Lee W, Tonelli M, Cornilescu CC, Cornilescu G, Assadi-Porter FM, et al. NMRFAM-SDF: a protein structure determination framework. J Biomol NMR. 2015;62(4):481–95.CrossRefGoogle Scholar
  54. 54.
    Rosato A, Vranken W, Fogh RH, Ragan TJ, Tejero R, Pederson K, et al. The second round of critical assessment of automated structure determination of proteins by NMR: CASD-NMR-2013. J Biomol NMR. 2015;62(4):413–24.CrossRefGoogle Scholar
  55. 55.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477–86.CrossRefGoogle Scholar
  56. 56.
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(Web Server issue):W375–83.CrossRefGoogle Scholar
  57. 57.
    Vuister GW, Fogh RH, Hendrickx PM, Doreleijers JF, Gutmanas A. An overview of tools for the validation of protein NMR structures. J Biomol NMR. 2014;58(4):259–85.CrossRefGoogle Scholar
  58. 58.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42.CrossRefGoogle Scholar
  59. 59.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2008;36(Database issue):D402–8.Google Scholar
  60. 60.
    Norton RS. μ-conotoxins as leads in the development of new analgesics. Molecules. 2010;15(4):2825–44.CrossRefGoogle Scholar
  61. 61.
    Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994;3(10):1833–9.CrossRefGoogle Scholar
  62. 62.
    Fiedler B, Zhang MM, Buczek O, Azam L, Bulaj G, Norton RS, et al. Specificity, affinity and efficacy of ι-conotoxin RXIA, an agonist of voltage-gated sodium channels NaV1.2, 1.6 and 1.7. Biochem Pharmacol. 2008;75(12):2334–44.CrossRefGoogle Scholar
  63. 63.
    Pallaghy PK, Alewood D, Alewood PF, Norton RS. Solution structure of robustoxin, the lethal neurotoxin from the funnel-web spider Atrax robustus. FEBS Lett. 1997;419(2–3):191–6.CrossRefGoogle Scholar
  64. 64.
    Fletcher JI, Chapman BE, Mackay JP, Howden ME, King GF. The structure of versutoxin (δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure. 1997;5(11):1525–35.CrossRefGoogle Scholar
  65. 65.
    Khoo KK, Wilson MJ, Smith BJ, Zhang MM, Gulyas J, Yoshikami D, et al. Lactam-stabilized helical analogues of the analgesic μ-conotoxin KIIIA. J Med Chem. 2011;54(21):7558–66.CrossRefGoogle Scholar
  66. 66.
    Krishnarjuna B, Ganjiwale AD, Manjappara UV, Raghothama S. NMR structure implications of enhanced efficacy of obestatin fragment analogs. Int J Pept Res Ther. 2011;17:259–70.CrossRefGoogle Scholar
  67. 67.
    Yao S, Zhang MM, Yoshikami D, Azam L, Olivera BM, Bulaj G, et al. Structure, dynamics, and selectivity of the sodium channel blocker μ-conotoxin SIIIA. Biochemistry. 2008;47(41):10940–9.CrossRefGoogle Scholar
  68. 68.
    Sher I, Chang SC, Li Y, Chhabra S, Palmer 3rd AG, Norton RS, et al. Conformational flexibility in the binding surface of the potassium channel blocker ShK. ChemBioChem. 2014;15(16):2402–10.CrossRefGoogle Scholar
  69. 69.
    Meirovitch E, Tchaicheeyan O, Sher I, Norton RS, Chill JH. Structural dynamics of the potassium channel blocker ShK: SRLS analysis of 15N relaxation. J Phys Chem B. 2015;119(49):15130–7.CrossRefGoogle Scholar
  70. 70.
    Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc. 2016;138(30):9663–74.CrossRefGoogle Scholar
  71. 71.
    Korukottu J, Schneider R, Vijayan V, Lange A, Pongs O, Becker S, et al. High-resolution 3D structure determination of kaliotoxin by solid-state NMR spectroscopy. PLoS One. 2008;3(6):e2359.CrossRefGoogle Scholar
  72. 72.
    Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, et al. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature. 2006;440(7086):959–62.CrossRefGoogle Scholar
  73. 73.
    Pennington MW, Beeton C, Galea CA, Smith BJ, Chi V, Monaghan KP, et al. Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol. 2009;75(4):762–73.CrossRefGoogle Scholar
  74. 74.
    Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J. Design of bioactive peptides from naturally occurring μ-conotoxin structures. J Biol Chem. 2012;287(37):31382–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medicinal Chemistry, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia

Personalised recommendations